Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50, 507–517.
Article
Google Scholar
Alexander, P. A. (2000). Toward a model of academic development: Schooling and the acquisition of knowledge: The sequel. Educational Researcher, 29, 28–44.
Google Scholar
Allan, B. M., & Fryer, R. G., Jr. (2011). The power and pitfalls of education incentives (Discussion Paper). Washington, DC: Brookings Institution/Hamilton Project.
Google Scholar
Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences USA, 108, 10367–10371.
Article
Google Scholar
Arnold, H. J. (1976). Effects of performance feedback and extrinsic reward upon high intrinsic motivation. Organizational Behavior and Human Performance, 17, 275–288.
Article
Google Scholar
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neurophysiological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550.
Article
Google Scholar
Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annal Review of Psychology, 56, 149–178.
Article
Google Scholar
Ashby, F. G., Valentin, V. V., & Turken, A. U. (2002). The effects of positive affect and arousal on working memory and executive attention. In S. Moore & M. Oaksford (Eds.), Emotional cognition: From brain to behaviour (pp. 245–287). Amsterdam: John Benjamins.
Chapter
Google Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35, 1124–1143.
Article
Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2011). Building a neuroscience of pleasure and well-being (Review). Psychology of Well-Being: Theory, Research and Practice, 1, 1–3.
Article
Google Scholar
Berridge, K. C., Robinson, T. E., & Aldridge, I. W. (2009). Dissecting components of reward: 'Liking', 'wanting', and learning. Current Opinion in Pharmacology, 9, 65–73.
Article
Google Scholar
Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619–639.
Article
Google Scholar
Bruer, J. T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26(8), 4–16.
Article
Google Scholar
Bunzeck, N., Doeller, C. F., Fuentemilla, L., Dolan, R. J., & Duzel, E. (2009). Reward motivation accelerates the onset of neural novelty signals in humans to 85 milliseconds. Current Biology, 19, 1294–1300.
Article
Google Scholar
Byron, K., & Khazanchi, S. (2012). Rewards and creative performance: A meta-analytic test of theoretically derived hypotheses. Psychological Bulletin, 138, 809–830.
Article
Google Scholar
Calder, B. J., & Staw, B. M. (1975). Self-perception of intrinsic and extrinsic motivation. Journal of Personality and Social Psychology, 31, 599–605.
Article
Google Scholar
Camerer, C. F. (2010). Removing financial incentives demotivates the brain. Proceedings of the National Academy of Sciences (PNAS), 107(49), 20849–20850.
Article
Google Scholar
Cameron, J., Banko, K. M., & Pierce, W. D. (2001). Pervasive negative effects of rewards on intrinsic motivation: The myth continues. The Behavior Analyst, 24, 1–44.
Google Scholar
Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A meta-analysis. Review of Educational Research, 64, 363–423.
Cameron, J., & Pierce, W. D. (1996). The debate about rewards and intrinsic motivation: Protests and accusations do not alter the results. Review of Educational Research, 66, 39–51.
Article
Google Scholar
Cameron, J., & Pierce, W. D. (2002). Rewards and intrinsic motivation: Resolving the controversy. Westport, CT: Bergin and Garvey.
Google Scholar
Cameron, J., Pierce, W. D., Banko, K. M., & Gear, A. (2005). Achievement-based rewards and intrinsic motivation: A test of cognitive mediators. Journal of Educational Psychology, 97, 641–655.
Article
Google Scholar
Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. NeuroImage, 57, 1608–1616.
Article
Google Scholar
Carter, M. R., MacInnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3, Article 21, 1-15. Retrieved March 13, 2011, from http://www.frontiersin.org/behavioral_neuroscience/10.3389/neuro.08.021.2009/full
Casey, B. J., Jones, R. M., & Somerville, L. H. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence, 21(1), 21–33.
Article
Google Scholar
Choudhury, S., Charman, T., & Blakemore, S. J. (2009). Mentalizing and development during adolescence. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 159–174). New York: Guilford Press.
Google Scholar
Cialdini, R. B., Eisenberg, N., Green, B. L., Rhoads, K., & Bator, R. (1998). Undermining the undermining effect of reward on sustained interest. Journal of Applied Social Psychology, 28, 249–263.
Article
Google Scholar
Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85–88.
Article
Google Scholar
Collins, M. A., & Amabile, T. M. (1999). Motivation and creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 297–312). New York: Cambridge University Press.
Google Scholar
Cooke, L. J., Chambers, L. C., Añez, E. V., & Wardle, J. (2011). Facilitating or undermining? The effect of reward on food acceptance. A narrative review. Appetite, 57(493), 497.
Google Scholar
Crone, E. A., & Westenberg, P. M. (2009). Development of the social brain in adolescence. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 378–396). New York: Guilford Press.
Google Scholar
Daniel, R., & Pollmann, S. (2010). Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. The Journal of Neuroscience, 30, 47–55.
Article
Google Scholar
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–115.
Article
Google Scholar
Deci, E. L. (1975). Intrinsic motivation. New York: Plenum.
Book
Google Scholar
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–668.
Article
Google Scholar
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
Book
Google Scholar
Deci, E. L., & Ryan, R. M. (2012). Motivation, personality, and development within embedded social contexts: An overview of Self-Determination Theory. In R. M. Ryan (Ed.), The Oxford handbook of human motivation (pp. 85–111). New York: Oxford University Press.
Google Scholar
Deci, E. L., Ryan, R. M., & Koestner, R. (2001). The pervasive negative effect of rewards on intrinsic motivation: Response to Cameron (2001). Review of Educational Research, 71, 43–51.
Article
Google Scholar
De Smedt, B., Ansari, D., Grabner, R. H., Hannula, M. M., Schneider, M., & Verschaffel, L. (2010). Cognitive neuroscience meets mathematics education. Educational Research Review, 5, 97–105.
Article
Google Scholar
Eisenberger, R., & Armeli, S. (1997). Can salient reward increase creative performance without reducing intrinsic creative interest? Journal of Personality and Social Psychology, 72, 652–663.
Article
Google Scholar
Eisenberger, R., & Cameron, J. (1996). The detrimental effects of reward: Myth or reality? American Psychologist, 51, 1153–1166.
Article
Google Scholar
Eisenberger, R., Pierce, W. D., & Cameron, J. (1999). Effects of reward on intrinsic motivation: Negative, neutral, and positive. Psychological Bulletin, 125, 677–691.
Article
Google Scholar
Eisenberger, R., & Shanock, L. (2003). Rewards, intrinsic motivation, and creativity: A case study of conceptual and methodological isolation. Creativity Research Journal, 15, 121–130.
Article
Google Scholar
Elliot, A. J. (Ed.). (2008). Handbook of approach and avoidance motivation. New York & Hove, England: Psychology Press/Taylor & Francis Group.
Google Scholar
Elliott, R., Agnew, Z., & Deakin, J. F. (2008). Medial orbitofrontal cortex codes relative rather than absolute value of financial rewards in humans. European Journal of Neuroscience, 27, 2213–2218.
Article
Google Scholar
Elliott, R., Newman, J. L., Longe, O. A., & William Deakin, J. F. (2004). Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuroImage, 21, 984–990.
Article
Google Scholar
Ernst, M., & Spear, L. P. (2009). Reward systems. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 324–341). New York: Guilford Press.
Google Scholar
Fareri, D. S., Martin, L. N., & Delgado, M. R. (2008). Reward-related processing in the human brain: Developmental considerations. Development and Psychopathology, 20, 1191–1211.
Article
Google Scholar
Filsecker, M., & Hickey, D. T. (2014). A multilevel analysis of the effects of external rewards on elementary students’ motivation, engagement and learning in an educational game. Computers and Education, 75, 136–148.
Article
Google Scholar
Flaherty, C. F. (1996). Incentive relativity. In J. Gray (Ed.), Problems in the Behavioural Sciences (Vol. 15). Cambridge, England: Cambridge University Press.
Google Scholar
Flowerday, T. L. (2012, April). Choice as a motivator for undergraduate college students: Perceptions and beliefs. In S. E. Hidi (Chair), The motivational benefits and detriments of choosing: Exploring the complexity of choice in educational contexts. Roundtable session conducted at the annual meeting of the American Educational Research Association, Vancouver, British Columbia, Canada.
Fredrickson, B. (2001). The role of positive emotion in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226.
Article
Google Scholar
Frenzel, A. C., Dicke, A. L., Pekrun, R., & Goetz, T. (2009). Development of mathematics interest in adolescence: Quantitative and qualitative insights. Paper presented at the meeting of the European Association on Learning and Instruction, Amsterdam, The Netherlands.
Gunnar, M. R., & deHaan, M. (2009). Methods in Social Neuroscience Issues in Studying Development. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 13–37). New York: Guilford Press.
Google Scholar
Gruber J.M., Gelman D.B.,and Ranganath C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–496).
Harackiewicz, J. M. (2011). I can't explain. In R. M. Azkin (Ed.), Most under-appreciated: 50 prominent social psychologists describe their most unloved work (pp. 185–187). New York: Oxford University Press.
Chapter
Google Scholar
Harackiewicz, J. M., & Manderlink, G. (1984). A process analysis of the effects of performance- contingent rewards on intrinsic motivation. Journal of Experimental Social Psychology, 20, 531–551.
Article
Google Scholar
Harackiewicz, J. M., Manderlink, G., & Sansone, C. (1984). Rewarding pinball wizardry: Effects of evaluation and cue value on intrinsic interest. Journal of Personality and Social Psychology, 47, 287–300.
Article
Google Scholar
Hennessey, B. A., & Amabile, T. M. (1998). Reward, intrinsic motivation, and creativity. American Psychologist, 53, 674–675.
Article
Google Scholar
Hickey, C., Chelazzi, L., & Theeuwes, J. (2011). Reward has a residual impact on target selection in visual search, but not on the suppression of distractors. Visual Cognition, 19, 117–128.
Article
Google Scholar
Hickey, D. T. (2003). Engaged participation versus marginal nonparticipation: A strindently sociocultural approach to achievement motivation. The Elementary School Journal, 103, 401–429.
Article
Google Scholar
Hidi, S. (2006). Interest: A unique motivational variable. Educational Research Review, 1, 69–82.
Article
Google Scholar
Hidi, S., & Harackiewicz, J. M. (2000). Motivating the academically unmotivated: A critical issue for the 21st century. Review of Educational Research, 70, 151–179.
Article
Google Scholar
Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96, 651–656.
Article
Google Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision making. Science, 310, 1680–1683.
Article
Google Scholar
Hulleman, C. S., & Barron, K. E. (2010). Teacher motivation and performance pay: Separating myth from reality. Phi Delta Kappan, 91(9), 27–31.
Article
Google Scholar
Iyengar, S. S., & Lepper, M. R. (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 79, 995–1006.
Article
Google Scholar
Iyengar, S. S., & Lepper, M. R. (2002). Choice and its consequences: On the costs and benefits of self-determination. In A. Tesser, D. A. Stapel, & J. V. Wood (Eds.), Self and motivation: Emerging psychological perspectives (pp. 71–96). Washington, DC: American Psychological Association.
Chapter
Google Scholar
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of Social and Monetary Rewards in the Human Straitum. Neuron, 58(2), 284–294.
Article
Google Scholar
Jabbar, H. (2011). The behavioural economics of education: New directions for research. Educational Researcher, 40, 446–453.
Article
Google Scholar
Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 1625–1633.
Article
Google Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263-291. Retrieved from http://www.jstor.org/stable/1914185
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20, 963–973.
Article
Google Scholar
Karniol, R., & Ross, M. (1977). The effects of performance-relevant and performance-irrelevant rewards on motivation. Child Development, 48, 482–487.
Article
Google Scholar
Kim, S. (2013). Neuro scientific model of motivational process. Frontiers in Psychology, special section p1.
Knutson, B., Delgado, M. R., & Phillips, P. E. M. (2008). Representation of subjective value in the striatum. In P. W. Glimcher, C. F. Camerer, E. Fehr, & R. A. Poldrack (Eds.), Neuroeconomics: Decision making and the brain (pp. 389–406). New York: Academic Press.
Google Scholar
Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. NeuroImage, 18, 263–272.
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). fMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12, 20–27.
Article
Google Scholar
Knutson, B., & Wimmer, G. E. (2007). Reward: Neural circuitry for social valuation. In E. Harmon-Jones & P. Winkielman (Eds.), Social neuroscience: Integrating biological and psychological explanations of social behavior (pp. 157–175). New York: Guilford Press.
Google Scholar
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C. J., & Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.
Article
Google Scholar
Kohn, A. (1993). Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston: Houghton Mifflin.
Google Scholar
Krebs, R. M., Heipertz, D., Schuetze, H., & Düzel, E. (2011). Novelty increases the mesolimbic functional connectivity of the substantia nigral/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI. NeuroImage, 58, 647–655.
Article
Google Scholar
Krebs, R. M., Schott, B. H., Schütze, H., & Düzel, E. (2009a). The novelty exploration bonus and its attentional modulation. Neuropsychologia, 47, 2272–2281.
Krebs, R. M., Schott, B. H., & Düzel, E. (2009b). Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biological Psychiatry, 65, 103–110.
Article
Google Scholar
Lee, W., & Reeve, J. (2013). Self-determined, but not non-self-determined, motivation predicts activations in the anterior insular cortex: an fMRI study of personal agency. Social Cognitive and Affective Neuroscience, 8(5), 538–545.
Lee, W., Reeve, J. (2014). Critical roles of interest in education: Theoretical and empirical advances .In K. Murayama (Chair) Intrinsic Vs. Extrinsic Motivation: A Neural Perspective Concurrent Symposia conducted at International Mind, Brain and Educational Society Conference, Fort Worth, Texas.
Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22(10), 1310–1318.
Article
Google Scholar
Lepper, M. R. (1983). Extrinsic reward and intrinsic motivation: Implications for the classroom. In J. Levine & M. Wang (Eds.), Teacher and student perceptions: Implications for learning (pp. 281–317). Hillsdale, NJ: Erlbaum.
Google Scholar
Lepper, M. R. (1998). A whole much less than the sum of its parts. American Psychologist, 53, 675–676.
Article
Google Scholar
Lepper, M. R., & Greene, D. (1975). Turning play into work: Effects of adult surveillance and extrinsic rewards on children's intrinsic motivation. Journal of Personality and Social Psychology, 31, 479–486.
Article
Google Scholar
Lepper, M. R., & Greene, D. (1978). Overjustification research and beyond: Toward a means-end analysis of intrinsic and extrinsic motivation. In M. R. Lepper & D. Greene (Eds.), The hidden costs of reward: New perspectives on the psychology of human motivation (pp. 109–148). Hillsdale, NJ: Erlbaum.
Google Scholar
Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining children's intrinsic interest with extrinsic reward: A test of the "overjustification" hypothesis. Journal of Personality and Social Psychology, 28, 129–137.
Article
Google Scholar
Lepper, M. R., & Henderlong, J. (2000). Turning "play" into "work" and "work" into "play": 25 years of research on intrinsic versus extrinsic motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 257–307). San Diego, CA: Academic Press.
Lepper, M. R., Henderlong Corpus, J., & Iyengar, S. S. (2005). Intrinsic and extrinsic motivational orientations in the classroom: Age differences and academic correlates. Journal of Educational Psychology, 97, 184–196.
Article
Google Scholar
Lepper, M. R., Master, A., & Yow, W. Q. (2008). Intrinsic motivation in education. In M. L. Maehr, M. L. Maehr, S. A. Karabenick, & T. C. Urdan (Eds.), Advances in motivation and achievement: Vol. 15. Social psychological perspectives (pp. 521-555) (Series Edth ed.). Bingley, England: Emerald.
Google Scholar
Linke, J., Kirsch, P., King, A. V., Gass, A., Hennerici, M. G., Bongers, A., & Wessa, M. (2010). Motivational orientation modulates the neural response to reward. NeuroImage, 49, 2618–2625.
Article
Google Scholar
Ma, Q., Jin, J., Meng, L., & Shen, Q. (2014). Cognitive neuroscience and neuropsychology. NeuroReport, 25(3), 194–198.
Article
Google Scholar
Martin, L. E., Potts, G. F., Burton, P. C., & Montague, P. R. (2009). Electrophysiological and hemodynamic responses to reward prediction violation. Neuroreport, 20, 1140–1143.
Article
Google Scholar
Martin-Soelch, C., Leenders, K. L., Chevalley, A.-F., Missimer, J., Künig, G., Magyar, S., Mino, A., & Schultz, W. (2001). Reward mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Reviews, 36, 139–149.
Article
Google Scholar
Mayes, L. C., Magidson, J., Lejuez, C. W., & Nicholls, S. S. (2009). Social relationships as primary rewards: The neurobiology of attachment. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 342–377). New York: Guilford Press.
Google Scholar
McBride, W. J., Murphy, J. M., & Ikemoto, S. (1999). Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research, 101, 129–152.
Article
Google Scholar
McClure, S. M., York, M. K., & Montague, P. R. (2004). The neural substrates of reward processing in humans: The modern role of fMRI. Neuroscientist, 10, 260–268.
Article
Google Scholar
Mitchell, C. P., & Flaherty, C. F. (2005). Differential effects of removing the glucose or saccharin components of a glucose-saccharin mixture in a successive negative contrast paradigm. Physiology and Behavior, 84, 579–583.
Article
Google Scholar
Mizuno, K., Tanaka, M., Ishii, A., Tanabe, H. C., Onoe, H., Sadato, N., & Watanabe, Y. (2008). The neural basis of academic achievement motivation. NeuroImage, 42, 369–378.
Article
Google Scholar
Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16, 1936–1947.
Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proceedings of the National Academy of Sciences (PNAS), 107(49), 20911–20916.
Article
Google Scholar
Murayama, K., & Kitagami, S. (2013). Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events. Jounral of Experiment Psycology: General. 1-3.
Murayama, K., & Kuhbandner, C. (2011). Money enhances memory consolidation – But only boring material. Cognition, 119, 120–124.
Article
Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., Sugiura, A., Ryan, R. M., Deci, E. L., & Matsumoto, K. (2014). How self-determined choice facilitates performance: A key role of the ventromedial prefrontal cortex. Cerebral Cortex. doi:10.1093/cercor/bht317. ISSN 1460–2199.
Google Scholar
Nomura, E. M., & Reber, P. J. (2008). A review of medial temporal lobe and caudate contributions to visual category learning. Neuroscience and Biobehavioral Reviews, 32, 279–291.
Article
Google Scholar
O'Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815–826.
Article
Google Scholar
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.
Article
Google Scholar
Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of the septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.
Article
Google Scholar
Panksepp, J. (1998). Affective neuroscience. New York: Oxford University Press.
Google Scholar
Panksepp, J. (2003). At the interface between the affective, behavioral and cognitive neurosciences: Decoding the emotional feelings of the brain. Brain and Cognition, 52, 4–14.
Article
Google Scholar
Patall, E. A. (2012). The Motivational Complexity of Choosing: A Review of Theory and Research. In R. M. Ryan (Ed.), TheOxford Handbook of Human Motivation (pp. 248–279). New York: Oxford University Press.
Google Scholar
Patall, E. A., Cooper, H., & Robinson, C. J. (2008). The Effects of Choice on Intrinsic Motivation and Related Outcomes: A Meta-Analysis of Research Findings, Psychological Bulletin. American Psychological Association, 134(2), 270–300.
Google Scholar
Pretty, G. H., & Seligman, C. (1984). Affect and the overjustification effect. Journal of Personality and Social Psychology, 46, 1251–1253.
Article
Google Scholar
Quintanilha, A. (2010). Promoting curiosity and understanding risk. Keynote address, International Conference on Motivation, Porto, Portugal.
Reiss, S. (2005). Extrinsic and intrinsic motivation at 30: Unresolved scientific issues. The Behavior Analyst, 28, 1–14.
Google Scholar
Reiss, S. (2011). The 40-year debate on motivation. Retrieved November 7, 2011, from Psychology Today's website: http://www.psychologytoday.com/print/78753
Reiss, S., & Sushinsky, L. W. (1975). Overjustification, competing responses, and the acquisition of intrinsic interest. Journal of Personality and Social Psychology, 31, 1116–1125.
Article
Google Scholar
Reiss, S., & Sushinsky, L. W. (1976). The competing response hypothesis of decreased play effects: A reply to Lepper and Greene. Journal of Personality and Social Psychology, 33, 233–244.
Article
Google Scholar
Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46, 168–184.
Article
Google Scholar
Renninger, K. A., & Hidi, S. (In Press). The Power of Interest for Engagement and Motivation. Rouledge Press.
Renninger, K. A., & Su, S. (2012). Interest and its development. In R. M. Ryan (Ed.), The Oxford Handbook of Human Motivation (pp. 167–187). New York: Oxford University Press.
Google Scholar
Rowe, J. B., Eckstein, D., Braver, T., & Owen, A. M. (2008). How does reward expectation influence cognition in the human brain? Journal of Cognitive Neuroscience, 20, 1980–1992.
Article
Google Scholar
Rushworth, M. F. S., Noonan, M. P., Boorman, E. D., Walton, M. E. & Behrens T. E. (2011). Frontal Cortex and reward-Guided Learning and Decision-Making. Neuron Rev, 1054-1069.
Ryan, R. M., & Deci, E. L. (2000). When rewards compete with nature: The undermining of intrinsic motivation and self-regulation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 13–54). San Diego, CA: Academic Press.
Chapter
Google Scholar
Ryan, R. M., & Deci, E. L. (2009). Promoting self-determined school engagement: Motivation, learning, and well-being. In K. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 171–196). New York: Routledge.
Google Scholar
Sansone, C., & Harackiewicz, J. M. (1998). "Reality" is complicated. Comment on Eisenberger and Cameron. American Psychologist, 53, 673–674.
Article
Google Scholar
Schlund, M. W., & Cataldo, M. F. (2005). Integrating functional neuroimaging and human operant research: Brain activation correlated with presentation of discriminative stimuli. Journal of the Experimental Analysis of Behavior, 84, 505–519.
Article
Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.
Google Scholar
Schultz, W. (2000). Multiple reward signals in brain. Nature Reviews: Neuroscience, 1(3), 199–207.
Article
Google Scholar
Schultz, W. (2006). Behavioural theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115.
Article
Google Scholar
Schultz, W. (2007a). Reward. Scholarpedia, 2(3), 1652.
Article
Google Scholar
Schultz, W. (2007b). Reward Signals. Scholarpedia, 2(6), 2184.
Article
Google Scholar
Schultz, W. (2010a). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.
Article
Google Scholar
Schultz, W. (2010b). Subjective neuronal coding of reward: Temporal value discounting and risk. European Journal of Neuroscience, 31, 2124–2135.
Article
Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.
Article
Google Scholar
Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473–500.
Article
Google Scholar
Schunk, D. (2008). An interview with Dale Schunk (Interviewed by G. Sakiz). Educational Psychology Review, 20, 485–491.
Article
Google Scholar
Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.
Article
Google Scholar
Tauer, John (2009). Different Motivational Strokes for Differentially Motivated Folks. Retrieved June 23, 2009, Psychology Today’s website: http://www.psychologytoday.com/blog/goal-posts/200906.
Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307, 1642–1645.
Article
Google Scholar
Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41, 281–292.
Article
Google Scholar
Urdan, Tim (2003). Intrinsic Motivation, Extrinsic Rewards, and Divergent Views of Reality. Eductional Psychology Review, Vol. 15, No. 3.
Vansteenkiste, M., Niemiec, C. P., & Soenens, B. (2010). The development of the five mini-theories of self-determination theory: An historical overview, emerging trends, and future directions. In T. C. Urdan & S. A. Karabenick (Eds.), The decade ahead: Theoretical perspectives on motivation and achievement(Advances in Motivation and Achievement, Volume 16) (pp. 105–165). Bingley, England: Emerald Group.
Chapter
Google Scholar
Velten, E. (1968). A Laboratory Task for Induction of Mood States. Behaviour Research and Therapy, 6, 473–482.
Article
Google Scholar
Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.
Article
Google Scholar
Wiechman, B. (2007). Assessing the durability of the undermining effect: The impact of extrinsic rewards on college students' intrinsic motivation. Unpublished senior thesis, Psychology Department, Middlebury College, Middlebury, Vermont.
Wightman, R. M., & Robinson, D. L. (2002). Transient changes in brain dopamine and their association with "reward.". Journal of Neurochemistry, 82, 721–735.
Article
Google Scholar
Wise, R. A. (1985). The anhedonia hypothesis: Mark III. Behavioral and Brain Sciences, 8, 178–186.
Article
Google Scholar
Wittmann, B. C., Bunzeck, N., Dolan, R. J., & Düzel, E. (2007). Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage, 38, 194–202.
Article
Google Scholar
Wittmann, B. C., Dolan, R. J., & Düzel, E. (2011). Behavioral specifications of reward-associated long-term memory enhancement in humans. Learning and Memory, 18, 296–300.
Article
Google Scholar
Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45, 459–467.
Article
Google Scholar
Zimmerman, B. I. (1985). The development of "intrinsic" motivation: A social learning analysis. Annals of Child Development, 2, 117–160.
Google Scholar
Zink, C. F., Pagnoni, G., Chappelow, J. C., Martin-Skurski, M. E., & Berns, G. S. (2006). Human striatal activation reflects degree of stimulus saliency. NeuroImage, 29, 977–983.
Article
Google Scholar
Zink, C. F., Pagnoni, G., Martin, M. E., Dhamala, M., & Berns, G. S. (2003). Human striatal response to salient nonrewarding stimuli. Journal of Neuroscience, 23, 8092–8097.
Google Scholar
Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42, 509–517.
Article
Google Scholar