Educational Psychology Review

, Volume 26, Issue 2, pp 225–244 | Cite as

Effects of the Physical Environment on Cognitive Load and Learning: Towards a New Model of Cognitive Load

  • Hwan-Hee ChoiEmail author
  • Jeroen J. G. van Merriënboer
  • Fred Paas
Review Article


Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and more specifically its effects on cognitive load, can be regarded as a determinant of the effectiveness of instruction. We present an updated version of the cognitive load model of Paas and Van Merriënboer (Educational Psychology Review, 6:351–371, 1994a), in which the physical learning environment is considered a distinct causal factor that can interact with learner characteristics, learning-task characteristics, or a combination of both. Previous research into effects of the physical learning environment on cognitive performance that could inspire new cognitive load research is discussed, and a future research agenda is sketched.


Cognitive load theory Physical learning environment Instructional design 


  1. Adam, H., & Galinsky, A. D. (2012). Enclothed cognition. Journal of Experimental Social Psychology, 48, 918–925. doi: 10.1016/j.jesp.2012.02.008.CrossRefGoogle Scholar
  2. Alexander, R. J. (2001). Culture and pedagogy: international comparisons in primary education. Oxford: Blackwell.Google Scholar
  3. Anderson, B. L., & Winawer, J. (2005). Image segmentation and lightness perception. Nature, 434, 79–83. doi: 10.1038/nature03271.CrossRefGoogle Scholar
  4. Ayres, P. (1993). Why goal-free problems can facilitate learning. Contemporary Educational Psychology, 18, 376–381. doi: 10.1006/ceps.1993.1027.CrossRefGoogle Scholar
  5. Ayres, P., & Paas, F. (2012). Cognitive load theory: new directions and challenges. Applied Cognitive Psychology, 26, 827–832. doi: 10.1002/Acp.2882.CrossRefGoogle Scholar
  6. Bar-Anan, Y., Liberman, N., & Trope, Y. (2006). The association between psychological distance and construal level: evidence from an implicit association test. Journal of Experimental Psychology, 135, 609. doi: 10.1037/0096-3445.135.4.609.CrossRefGoogle Scholar
  7. Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4, 91–99. doi: 10.1016/S1364-6613(99)01440-0.CrossRefGoogle Scholar
  8. Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107, 1860–1863. doi: 10.1073/pnas.0910967107.CrossRefGoogle Scholar
  9. Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: knowing about knowing (pp. 185–205). Cambridge, MA: MIT Press.Google Scholar
  10. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 7–19. doi: 10.1093/analys/58.1.7.CrossRefGoogle Scholar
  11. Cohen, S., Evans, G. W., Krantz, D. S., & Stokols, D. (1980). Physiological, motivational, and cognitive effects of aircraft noise on children: moving from the laboratory to the field. American Psychologist, 35, 231–243. doi: 10.1037/0003-066X.35.3.231.CrossRefGoogle Scholar
  12. Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922.CrossRefGoogle Scholar
  13. Dillenbourg, P., & Traum, D. (1997). The role of a whiteboard in a distributed cognitive system. Paper presented at the Swiss workshop on collaborative and distributed systems, Lausanne, Switzerland, May 1st 1997. Retrieved on January, 15, 2014. from
  14. Doherty-Sneddon, G., & Phelps, F. G. (2005). Gaze aversion: a response to cognitive or social difficulty? Memory & Cognition, 33, 727–733. doi: 10.3758/BF03195338.CrossRefGoogle Scholar
  15. Doherty-Sneddon, G., Bruce, V., Bonner, L., Longbotham, S., & Doyle, C. (2002). Development of gaze aversion as disengagement from visual information. Developmental Psychology, 38, 438–445. doi: 10.1037/0012-1649.38.3.438.Google Scholar
  16. Dowaliby, F., & Schumer, H. (1973). Teacher-centered versus student-centered mode of college classroom instruction as related to manifest anxiety. Journal of Educational Psychology, 64, 125. doi: 10.1037/h0034590.
  17. Erez, A., & Isen, A. M. (2002). The influence of positive affect on the components of expectancy motivation. Journal of Applied Psychology, 87, 1055–1067. doi: 10.1037/0021-9010.87.6.1055.CrossRefGoogle Scholar
  18. Evans, G. W. (2006). Child development and the physical environment. Annual Review of Psychology, 57, 423–451. doi: 10.1146/annurev.psych.57.102904.190057.CrossRefGoogle Scholar
  19. Evans, G. W., & Lepore, S. J. (1993). Nonauditory effects of noise on children: a critical review. Children’s Environments, 10, 31–51. doi: 10.2307/41515250.Google Scholar
  20. Evans, G. W., & Stecker, R. (2004). Motivational consequences of environmental stress. Journal of Environmental Psychology, 24, 143–165. doi: 10.1016/S0272-4944(03)00076-8.CrossRefGoogle Scholar
  21. Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance—the processing efficiency theory. Cognition & Emotion, 6, 409–434. doi: 10.1080/02699939208409696.CrossRefGoogle Scholar
  22. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7, 336–353. doi: 10.1037/1528-3542.7.2.336.CrossRefGoogle Scholar
  23. Fraser, K., Huffman, J., Ma, I., Wright, B., McIlwrick, J., & McLaughlin, K. (2011). Death of a manikin: adverse effects on learning and mechanisms. CHEST Journal, 140, 1024A–1024A. doi: 10.1378/chest.1112887.CrossRefGoogle Scholar
  24. Fraser, K., Ma, I., Teteris, E., Baxter, H., Wright, B., & McLaughlin, K. (2012). Emotion, cognitive load and learning outcomes during simulation training. Medical Education, 46, 1055–1062. doi: 10.1111/j.1365-2923.2012.04355.x.CrossRefGoogle Scholar
  25. Fujita, K., Henderson, M. D., Eng, J., Trope, Y., & Liberman, N. (2006). Spatial distance and mental construal of social events. Psychological Science, 17, 278–282. doi: 10.1111/j.1467-9280.2006.01698.x.CrossRefGoogle Scholar
  26. Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179–195. doi: 10.1080/00461520802392133.
  27. Gisselgard, J., Petersson, K. M., Baddeley, A. D., & Ingvar, M. (2003). The irrelevant speech effect: a PET study. Neuropsychologia, 41, 1899–1911. doi: 10.1016/S0028-3932(03)00122-2.CrossRefGoogle Scholar
  28. Gisselgard, J., Petersson, K. M., & Ingvar, M. (2004). The irrelevant speech effect and working memory load. NeuroImage, 22, 1107–1116. doi: 10.1016/j.neuroimage.2004.02.031.CrossRefGoogle Scholar
  29. Glenberg, A. M., Schroeder, J. L., & Robertson, D. A. (1998). Averting the gaze disengages the environment and facilitates remembering. Memory & Cognition, 26, 651–658. doi: 10.3758/BF03211385.CrossRefGoogle Scholar
  30. Godden, D., & Baddeley, A. D. (1980). When does context influence recognition memory? British Journal of Psychology, 71, 99–104. doi: 10.1111/j.2044-8295.1980.tb02735.x.CrossRefGoogle Scholar
  31. Grant, H. M., Bredahl, L. C., Clay, J., Ferrie, J., Groves, J. E., McDorman, T. A., & Dark, V. J. (1998). Context-dependent memory for meaningful material: information for students. Applied Cognitive Psychology, 12, 617–623. doi: 10.1002/(SICI)1099-0720(1998120)12:6<617::AID-ACP542>3.0.CO;2-5.CrossRefGoogle Scholar
  32. Gump, P. V. (1980). The school as a social situation. Annual Review of Psychology, 31, 553–582. doi: 10.1146/ Scholar
  33. Hancock, D. R. (2001). Effects of test anxiety and evaluative threat on students’ achievement and motivation. Journal of Educational Research, 94, 284–290. doi: 10.1080/00220670109598764.CrossRefGoogle Scholar
  34. Hattie, J., & Watkins, D. (1988). Preferred classroom environment and approach to learning. British Journal of Educational Psychology, 58, 345–349. doi: 10.1111/j.2044-8279.1988.tb00910.x.Google Scholar
  35. Higgins, S., Hall, E., Wall, K., Woolner, P., & McCaughey, C. (2005). The impact of school environments: a literature review. The Centre for Learning and Teaching, School of Education, Communication and Language Science, University of Newcastle. Retrieved on February, 16, 2014. from
  36. Hong, S. B., Hong, Y. C., Kim, J. W., Park, E. J., Shin, M. S., Kim, B. N., et al. (2013). Bisphenol A in relation to behavior and learning of school‐age children. Journal of Child Psychology and Psychiatry, 54, 890–899. doi: 10.1111/jcpp.12050.Google Scholar
  37. Hygge, S., & Knez, I. (2001). Effects of noise, heat and indoor lighting on cognitive performance and self-reported affect. Journal of Environmental Psychology, 21, 291–299. doi: 10.1006/jevp.2001.0222.CrossRefGoogle Scholar
  38. Jamieson, P., Fisher, K., Gilding, T., Taylor, P. G., & Trevitt, A. C. F. (2000). Place and space in the design of new learning environments. Higher Education Research and Development, 19, 221–236. doi: 10.1080/072943600445664.CrossRefGoogle Scholar
  39. Jia, L., Hirt, E. R., & Karpen, S. C. (2009). Lessons from a faraway land: the effect of spatial distance on creative cognition. Journal of Experimental Social Psychology, 45, 1127–1131. doi: 10.1016/j.jesp.2009.05.015.CrossRefGoogle Scholar
  40. Kalyuga, S. (2011). Cognitive load theory: how many types of load does it really need? Educational Psychology Review, 23, 1–19. doi: 10.1007/s10648-010-9150-7.CrossRefGoogle Scholar
  41. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31. doi: 10.1207/S15326985ep3801_4.CrossRefGoogle Scholar
  42. Kalyuga, S., Rikers, R., & Paas, F. (2012). Educational implications of expertise reversal effects in learning and performance of complex cognitive and sensorimotor skills. Educational Psychology Review, 24, 313–337. doi: 10.1007/s10648-012-9195-x.CrossRefGoogle Scholar
  43. Kirschner, F., Paas, F., & Kirschner, P. A. (2009). A cognitive load approach to collaborative learning: united brains for complex tasks. Educational Psychology Review, 21, 31–42. doi: 10.1007/s10648-008-9095-2.CrossRefGoogle Scholar
  44. Kirschner, F., Paas, F., & Kirschner, P. A. (2011a). Task complexity as a driver for collaborative learning efficiency: the collective working-memory effect. Applied Cognitive Psychology, 25, 615–624. doi: 10.1002/acp.1730.CrossRefGoogle Scholar
  45. Kirschner, F., Paas, F., Kirschner, P. A., & Janssen, J. (2011b). Differential effects of problem-solving demands on individual and collaborative learning outcomes. Learning and Instruction, 21, 587–599. doi: 10.1016/j.learninstruc.2011.01.001.CrossRefGoogle Scholar
  46. Kirschner, P. A., & Van Merriënboer, J. J. G. (2013). Do learners really know best? Urban legends in education. Educational Psychologist, 48, 169–183. doi: 10.1080/00461520.2013.804395.
  47. Knez, I., & Enmarker, I. (1998). Effects of office lighting on mood and cognitive performance and a gender effect in work-xrelated judgment. Environment and Behavior, 30, 553–567. doi: 10.1177/001391659803000408.
  48. Knez, I., & Kers, C. (2000). Effects of indoor lighting, gender, and age on mood and cognitive performance. Environment and Behavior, 32, 817–831. doi: 10.1177/0013916500326005.Google Scholar
  49. Knez, I., & Hygge, S. (2002). Irrelevant speech and indoor lighting: effects on cognitive performance and self–reported affect. Applied Cognitive Psychology, 16, 709–718. doi: 10.1002/acp.829.CrossRefGoogle Scholar
  50. Kramer, A. F., Coyne, J. T., & Strayer, D. L. (1993). Cognitive function at high-altitude. Human Factors, 35, 329–344. doi: 10.1177/001872089303500208.Google Scholar
  51. Lan, L., Wargocki, P., Wyon, D. P., & Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air, 21, 376–390. doi: 10.1111/j.1600-0668.2011.00714.x.CrossRefGoogle Scholar
  52. Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavioral Research Methods, 45, 1058–1072. doi: 10.3758/s13428-013-0334-1.CrossRefGoogle Scholar
  53. Leppink, J., Paas, F., Van Gog, T., Van der Vleuten, C. P. M., & Van Merriënboer, J. J. G. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32–42. doi: 10.1016/j.learninstruc.2013.12.001.CrossRefGoogle Scholar
  54. Marks, L. E., Shepard, T. G., Burger, K., & Chakwin, E. M. (2012). Flavor-intensity perception: effects of stimulus context. Physiology & Behavior, 105, 443–450. doi: 10.1016/j.physbeh.2011.08.039.CrossRefGoogle Scholar
  55. Marx, A., Fuhrer, U., & Hartig, T. (1999). Effects of classroom seating arrangements on children’s question-asking. Learning Environments Research, 2, 249–263. doi: 10.1023/A:1009901922191.CrossRefGoogle Scholar
  56. McCoy, J. M., & Evans, G. W. (2002). The potential role of the physical environment in fostering creativity. Creativity Research Journal, 14, 409–426. doi: 10.1207/S15326934CRJ1434_11.CrossRefGoogle Scholar
  57. Mehrabian, A. (1969). Significance of posture and position in the communication of attitude and status relationships. Psychological Bulletin, 71, 359–372. doi: 10.1037/h0027349.CrossRefGoogle Scholar
  58. Mehta, R., & Zhu, R. J. (2009). Blue or red? Exploring the effect of color on cognitive task performances. Science, 323, 1226–1229. doi: 10.1126/science.1169144.CrossRefGoogle Scholar
  59. Mehta, R., Zhu, R. J., & Cheema, A. (2012). Is noise always bad? Exploring the effects of ambient noise on creative cognition. Journal of Consumer Research, 39, 784–799. doi: 10.1086/665048.CrossRefGoogle Scholar
  60. Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15, 27–52. doi: 10.1111/j.1600-0668.2004.00320.x.CrossRefGoogle Scholar
  61. Meyers–Levy, J., & Zhu, R. J. (2007). The influence of ceiling height: the effect of priming on the type of processing that people use. Journal of Consumer Research, 34, 174–186.CrossRefGoogle Scholar
  62. Miller, G. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi: 10.1037/h0043158.CrossRefGoogle Scholar
  63. Montello, D. R. (1988). Classroom seating location and its effect on course achievement, participation, and attitudes. Journal of Environmental Psychology, 8, 149–157. doi: 10.1016/S0272-4944(88)80005-7.CrossRefGoogle Scholar
  64. Moreno, R., & Mayer, R. E. (2000). A coherence effect in multimedia learning: the case for minimizing irrelevant sounds in the design of multimedia instructional messages. Journal of Educational Psychology, 92, 117–125. doi: 10.1037//0022-0663.92.1.117.CrossRefGoogle Scholar
  65. Nairne, J. S., & Pandeirada, J. N. S. (2010). Adaptive memory: ancestral priorities and the mnemonic value of survival processing. Cognitive Psychology, 61, 1–22. doi: 10.1016/j.cogpsych.2010.01.005.
  66. Needleman, H. L., Gunnoe, C., Leviton, A., Reed, R., Peresie, H., Maher, C., & Barrett, P. (1979). Deficits in psychologic and classroom performance of children with elevated dentine lead levels. The New England Journal of Medicine, 300, 689–695. doi: 10.1056/NEJM197903293001301.Google Scholar
  67. Nielsen, H. D., & Moos, R. H. (1978). Exploration and adjustment in high school classrooms: a study of person-environment fit. The Journal of Educational Research, 72, 52–57. doi: 10.2307/27537177.Google Scholar
  68. Otgaar, H., & Smeets, T. (2010). Adaptive memory: survival processing increases both true and false memory in adults and children. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1010. doi: 10.1037/a0019402.
  69. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. Journal of Educational Psychology, 84, 429–434. doi: 10.1037/0022-0663.84.4.429.CrossRefGoogle Scholar
  70. Paas, F., Camp, G., & Rikers, R. (2001). Instructional compensation for age-related cognitive declines: effects of goal specificity in maze learning. Journal of Educational Psychology, 93, 181. doi: 10.1037/0022-0663.93.1.181.CrossRefGoogle Scholar
  71. Paas, F., Renkl, A., & Sweller, J. (2003a). Cognitive load theory and instructional design: recent developments. Educational Psychologist, 38, 1–4. doi: 10.1207/S15326985ep3801_1.CrossRefGoogle Scholar
  72. Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1–8. doi: 10.1023/B:TRUC.0000021806.17516.d0.CrossRefGoogle Scholar
  73. Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24, 27–45. doi: 10.1007/s10648-011-9179-2.CrossRefGoogle Scholar
  74. Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003b). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71. doi: 10.1207/S15326985ep3801_8.CrossRefGoogle Scholar
  75. Paas, F., Tuovinen, J. E., Van Merriënboer, J. J. G., & Darabi, A. A. (2005). A motivational perspective on the relation between mental effort and performance: optimizing learner involvement in instruction. Educational Technology Research and Development, 53, 25–34. doi: 10.1007/Bf02504795.CrossRefGoogle Scholar
  76. Paas, F., & Van Merriënboer, J. J. G. (1993). The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Human Factors, 35, 737–743. doi: 10.1177/001872089303500412.Google Scholar
  77. Paas, F., & Van Merriënboer, J. J. G. (1994a). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6, 351–371. doi: 10.1007/bf02213420.CrossRefGoogle Scholar
  78. Paas, F., & Van Merriënboer, J. J. G. (1994b). Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. Journal of Educational Psychology, 86, 122–133. doi: 10.1037/0022-0663.86.1.122.CrossRefGoogle Scholar
  79. Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. doi: 10.1037/h0049234.CrossRefGoogle Scholar
  80. Plass, J. L., Heidig, S., Hayward, E. O., Homer, B. D., & Um, E. (2013). Emotional design in multimedia learning: effects of shape and color on affect and learning. Learning and Instruction. doi: 10.1016/j.learninstruc.2013.02.006.Google Scholar
  81. Retnowati, E., Ayres, P., & Sweller, J. (2010). Worked example effects in individual and group work settings. Educational Psychology, 30, 349–367. doi: 10.180/01443411003659960.Google Scholar
  82. Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research and Review, 7, 216–237. doi: 10.1016/j.edurev.2012.05.003.CrossRefGoogle Scholar
  83. Rey, G. D. (2014). Seductive details and attention distraction—an eye tracker experiment. Computers in Human Behavior, 32, 133–144. doi: 10.1016/j.chb.2013.11.017.CrossRefGoogle Scholar
  84. Rivlin, L. G., & Weinstein, C. S. (1984). Educational issues, school settings, and environmental psychology. Journal of Environmental Psychology, 4, 347–364. doi: 10.1016/S0272-4944(84)80005-5.CrossRefGoogle Scholar
  85. Salamé, P., & Baddeley, A. D. (1982). Disruption of short-term memory by unattended speech: implications for the structure of working memory. Journal of Verbal Learning and Verbal Behavior, 21, 150–164. doi: 10.1016/S0022-5371(82)90521-7.CrossRefGoogle Scholar
  86. Salamé, P., & Baddeley, A. D. (1986). Phonological factors in STM: similarity and the unattended speech effect. Bulletin of the Psychonomic Society, 24, 263–265. doi: 10.3758/BF03330135.CrossRefGoogle Scholar
  87. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66. doi: 10.1037/0033-295X.84.1.1.CrossRefGoogle Scholar
  88. Scholey, A. B., Harper, S., & Kennedy, D. O. (2001). Cognitive demand and blood glucose. Physiology & Behavior, 73, 585–592. doi: 10.1016/S0031-9384(01)00476-0.CrossRefGoogle Scholar
  89. Scholey, A. B., Moss, M. C., Neave, N., & Wesnes, K. (1999). Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiology & Behavior, 67, 783–789. doi: 10.1016/S0031-9384(99)00183-3.CrossRefGoogle Scholar
  90. Schwebel, A. I., & Cherlin, D. L. (1972). Physical and social distancing in teacher-pupil relationships. Journal of Educational Psychology, 63, 543–550. doi: 10.1037/h0034081.CrossRefGoogle Scholar
  91. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: Ii. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.CrossRefGoogle Scholar
  92. Smith, A., & Ayres, P. (this issue). The impact of persistent pain on working memory and learning. Educational Psychology Review.Google Scholar
  93. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. doi: 10.1126/science.283.5408.1657.CrossRefGoogle Scholar
  94. Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: a review and meta-analysis. Psychonomic Bulletin & Review, 8, 203–220. doi: 10.3758/BF03196157.CrossRefGoogle Scholar
  95. Sommer, R. (1967). Classroom ecology. Journal of Applied Behavioral Science, 3, 489–503.CrossRefGoogle Scholar
  96. Suss, C., Gaylord, S., & Fagen, J. (2012). Odor as a contextual cue in memory reactivation in young infants. Infant Behavior & Development, 35, 580–583. doi: 10.1016/j.infbeh.2012.05.004.CrossRefGoogle Scholar
  97. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12, 257–285. doi: 10.1016/0364-0213(88)90023-7.CrossRefGoogle Scholar
  98. Sweller, J. (2008). Instructional implications of David C. Geary’s evolutionary educational psychology. Educational Psychologist, 43, 214–216. doi: 10.1080/00461520802392208.Google Scholar
  99. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123–138. doi: 10.1007/s10648-010-9128-5.CrossRefGoogle Scholar
  100. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory (vol. 1). New York: Springer.Google Scholar
  101. Sweller, J., Van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296. doi: 10.1023/A:1022193728205.CrossRefGoogle Scholar
  102. Tanner, C. K. (2000). The influence of school architecture on academic achievement. Journal of Educational Administration, 38, 309–330. doi: 10.1108/09578230010373598.CrossRefGoogle Scholar
  103. Tanner, C. K. (2008). Explaining relationships among student outcomes and the school’s physical environment. Journal of Advanced Academics, 19, 444–471. doi: 10.4219/jaa-2008-812.Google Scholar
  104. Titchener, E. B. (1901). Experimental psychology: A manual of laboratory practice (vol. 1). New York: The Macmillan Co. Google Scholar
  105. Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological Review, 117, 440–463. doi: 10.1037/a0018963.CrossRefGoogle Scholar
  106. Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373. doi: 10.1037/h0020071.CrossRefGoogle Scholar
  107. Turner, J. R., & Carroll, D. (1985). Heart rate and oxygen consumption during mental arithmetic, a video game, and graded exercise: further evidence of metabolically-exaggerated cardiac adjustments? Psychophysiology, 22, 261–267. doi: 10.1111/j.1469-8986.1985.tb01597.x.CrossRefGoogle Scholar
  108. Uline, C., & Tschannen-Moran, M. (2008). The walls speak: the interplay of quality facilities, school climate, and student achievement. Journal of Educational Administration, 46, 55–73. doi: 10.1108/09578230810849817.CrossRefGoogle Scholar
  109. Um, E., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104, 485–498. doi: 10.1037/A0026609.CrossRefGoogle Scholar
  110. Van Gerven, P. W. M., Paas, F., Van Merriënboer, J. J. G., & Schmidt, H. G. (2002). Cognitive load theory and aging: effects of worked examples on training efficiency. Learning and Instruction, 12, 87–105. doi: 10.1016/s0959-4752(01)00017-2.CrossRefGoogle Scholar
  111. Van Gerven, P. W. M., Paas, F., Van Merriënboer, J. J. G., & Schmidt, H. G. (2006). Modality and variability as factors in training the elderly. Applied Cognitive Psychology, 20, 311–320. doi: 10.1002/acp.1247.CrossRefGoogle Scholar
  112. Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 154–164. doi: 10.1016/j.learninstruc.2006.02.003.CrossRefGoogle Scholar
  113. Van Merriënboer, J. J. G. (1990). Strategies for programming instruction in high school: program completion vs. program generation. Journal of Educational Computing Research, 6, 265–285. doi: 10.2190/4NK5-17L7-TWQV-1EHL.CrossRefGoogle Scholar
  114. Van Merriënboer, J. J. G., & De Croock, M. B. M. (1992). Strategies for computer-based programming instruction: program completion vs. program generation. Journal of Educational Computing Research, 8, 365–394. doi: 10.2190/MJDX-9PP4-KFMT-09PM.CrossRefGoogle Scholar
  115. Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: recent developments and future directions. Educational Psychology Review, 17, 147–177. doi: 10.1007/s10648-005-3951-0.CrossRefGoogle Scholar
  116. Van Merriënboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professional education: design principles and strategies. Medical Education, 44, 85–93. doi: 10.1111/j.1365-2923.2009.03498.x.CrossRefGoogle Scholar
  117. Vredeveldt, A., Hitch, G., & Baddeley, A. D. (2011). Eyeclosure helps memory by reducing cognitive load and enhancing visualisation. Memory & Cognition, 39, 1253–1263. doi: 10.3758/s13421-011-0098-8.CrossRefGoogle Scholar
  118. Weinstein, C. S. (1979). The physical environment of the school: a review of the research. Review of Educational Research, 49, 577–610. doi: 10.3102/00346543049004577.CrossRefGoogle Scholar
  119. Weinstein, Y., Bugg, J. M., & Roediger, H. L. (2008). Can the survival recall advantage be explained by basic memory processes? Memory & Cognition, 36, 913–919. doi: 10.3758/MC.36.5.913.Google Scholar
  120. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636. doi: 10.3758/BF03196322.CrossRefGoogle Scholar
  121. Wong, N., & Watkins, D. (1996). Self-monitoring as a mediator of person-environment fit: an investigation of Hong Kong mathematics classroom environments. British Journal of Educational Psychology, 66, 223–229. doi: 10.1111/j.2044-8279.1996.tb01191.x.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hwan-Hee Choi
    • 1
    Email author
  • Jeroen J. G. van Merriënboer
    • 2
  • Fred Paas
    • 1
    • 3
  1. 1.Institute of PsychologyErasmus University RotterdamRotterdamThe Netherlands
  2. 2.Department of Educational Development and ResearchMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Early Start Research InstituteUniversity of WollongongWollongongAustralia

Personalised recommendations