Skip to main content
Log in

An Embedded and Embodied Cognition Review of Instructional Manipulatives

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Recent literature on learning with instructional manipulatives seems to call for a moderate view on the effects of perceptual and interactive richness of instructional manipulatives on learning. This “moderate view” holds that manipulatives’ perceptual and interactive richness may compromise learning in two ways: (1) by imposing a very high cognitive load on the learner, and (2) by hindering drawing of symbolic inferences that are supposed to play a key role in transfer (i.e., application of knowledge to new situations in the absence of instructional manipulatives). This paper presents a contrasting view. Drawing on recent insights from Embedded Embodied perspectives on cognition, it is argued that (1) perceptual and interactive richness may provide opportunities for alleviating cognitive load (Embedded Cognition), and (2) transfer of learning is not reliant on decontextualized knowledge but may draw on previous sensorimotor experiences of the kind afforded by perceptual and interactive richness of manipulatives (Embodied Cognition). By negotiating the Embedded Embodied Cognition view with the moderate view, implications for research are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Tangible user interfaces go beyond classical user interfaces (e.g., mouse, keyboard) and are designed to provide more natural or functional physical manipulation of virtual objects (Manches and O’Malley 2012; O’Malley and Stanton-Fraser 2004; Shaer and Hornecker 2010).

  2. For example, “When children interact with manipulatives, their cognitive resources may be committed to representing and manipulating the objects and may be largely unavailable for other processes, such as accessing relevant concepts or implementing appropriate procedures” (McNeil and Jarvin 2007, p. 313).

  3. It is important to note this is a possible position that can be drawn from the results, not necessarily a position that all the authors of the previously reported studies take.

  4. Note that Clark (2005) uses “disembodied” here. We use disembedded as to consistently make a distinction between embeddedness and embodiment.

  5. Important to note, this depends on whether expertise is defined as a disembedded cognitive capability.

References

  • Anderson, M. L. (2008). On the grounds of (X)-grounded cognition. In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: an embodied approach (pp. 423–435). New York: Elsevier.

    Google Scholar 

  • Andres, M., Seron, X., & Oliver, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19, 563–576.

    Google Scholar 

  • Antle, A. N. (2012). Exploring how children use their hands to think: an embodied interactional analysis. Behaviour & Information Technology, 32, 938–954.

    Google Scholar 

  • Antle, A. N., Droumeva, M., & Ha, D. (2009). Hands on what?: Comparing children’s mouse-based and tangible-based interaction. In Proceedings of the 8th International Conference on Interaction Design and Children (pp. 80–88).

  • Ball, D. L. (1992). Magical hopes: manipulatives and the reform of math education. American Educator, 16(2), 14–18.

    Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66–80.

    Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. N. (1997). Deiectic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20, 723-767.

    Google Scholar 

  • Barrós-Loscertales, A., González, J., Pulvermüller, F., VenturaCampos, N., Bustamante, J. C., Costumero, V., et al. (2011). Reading “salt” activates gustatory brain regions: fMRI evidence for semantic grounding in a novel sensory modality. Cerebral Cortex, 22, 2554–2563.

    Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660.

    Google Scholar 

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    Google Scholar 

  • Black, J. B. (2011). Embodied cognition and learning environment design. Theoretical foundations of student-centered learning environments. New York: Routledge.

    Google Scholar 

  • Borst, J. P., Buwalda, T. A., van Rijn, H., & Taatgen, N. A. (2013). Avoiding the problem state bottleneck by strategic use of the environment. Acta Psychologica, 144(2), 373–379.

    Google Scholar 

  • Bredo, E. (1994). Reconstructing educational psychology: situated cognition and Deweyian pragmatism. Educational Psychologist, 29(1), 23–35.

    Google Scholar 

  • Brown, M. C., McNeil, N. M., & Glenberg, A. M. (2009). Using concreteness in education: real problems, potential solutions. Child Development Perspectives, 3(3), 160–164.

    Google Scholar 

  • Calvo, P., & Gomila, T. (2008). Handbook of cognitive science: an embodied approach. San Diego: Elsevier.

    Google Scholar 

  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.

    Google Scholar 

  • Chu, M., & Kita, S. (2011). The nature of gestures’ beneficial role in spatial problem solving. Journal of Experimental Psychology: General, 140, 102–116.

    Google Scholar 

  • Chu, M., Meyer, A., Foulkes, L., & Kita, S. (2013). Individual differences in frequency and salience of speech-accompanying gestures: the role of cognitive abilities and empathy. Journal of Experimental Psychology: General. doi:10.1037/a0033861.

    Google Scholar 

  • Clark, A. (2005). Beyond the flesh: some lessons from a mole cricket. Artificial Life, 11(1–2), 233–244.

    Google Scholar 

  • Clark, A. (2008). Supersizing the mind: embodiment, action, and cognitive extension. New York: Oxford University Press.

    Google Scholar 

  • Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19.

    Google Scholar 

  • Clements, D. H. (2000). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.

    Google Scholar 

  • De Bock, D., Deprez, J., Van Dooren, W., Roelens, M., & Verschaffel, L. (2011). Abstract or concrete examples in learning mathematics? A replication and elaboration of Kaminski, Sloutsky, and Heckler’s study. Journal for Research in Mathematics Education, 42(2), 109–126.

    Google Scholar 

  • De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308.

    Google Scholar 

  • De Koning, B. B., & Van der Schoot, M. (2013). Becoming part of the story! Refueling the interest in visualization strategies for reading comprehension. Educational Psychology Review, 25, 261–287.

    Google Scholar 

  • de Vega, M., Glenberg, A. M., & Graesser, A. C. (2008). Symbols, embodiment and meaning. Oxford: Oxford University Press.

  • DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 1556–1557.

    Google Scholar 

  • DeLoache, J. S. (1991). Symbolic functioning in very young children: understanding of pictures and models. Child Development, 62(4), 736–752.

    Google Scholar 

  • DeLoache, J. S. (2000). Dual representation and young children’s use of scale models. Child Development, 71(2), 329–338.

    Google Scholar 

  • DeLoache, J. S. (2004). Becoming symbol-minded. Trends in Cognitive Sciences, 8(2), 66–70.

    Google Scholar 

  • Dienes, Z. P. (1973). The six stages in the process of learning mathematics. Slough: National Foundation for Education Research/Nelson.

    Google Scholar 

  • Dourish, P. (2004). Where the action is: the foundations of embodied interaction. Massachusetts: MIT Press.

    Google Scholar 

  • Droll, J. A., & Hayhoe, M. M. (2007). Trade-offs between gaze and working memory use. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1352.

    Google Scholar 

  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., et al. (2005). When learning about the real world is better done virtually: a study of substituting computer simulations for laboratory equipment. Physical Review Special Topics-Physics Education Research, 1(1), 1–8.

    Google Scholar 

  • Flanagan, R. (2013). Effects of learning from interaction with physical or mediated devices. Cognitive Processing, 14, 213–215.

    Google Scholar 

  • Flusberg, S. J., & Boroditsky, L. (2011). Are things that are hard to physically move also hard to imagine moving? Psychonomic Bulletin & Review, 18(1), 158–164.

    Google Scholar 

  • Fodor, J. A. (1975). The language of thought. Cambridge: Harvard University Press.

    Google Scholar 

  • Frank, M. C., & Barner, D. (2012). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141(1), 134–149.

    Google Scholar 

  • Fu, W. T. (2011). A dynamic context model of interactive behavior. Cognitive Science, 35(5), 874–904.

    Google Scholar 

  • Fyfe, E. McNeil, N., Son, J. & Goldstone, R. (2014/this issue). Concreteness fading offers the best of both concrete and abstract instruction. Educational Psychology Review.

  • Gaschler, R., Vaterrodt, B., Frensch, P. A., Eichler, A., & Haider, H. (2013). Spontaneous usage of different shortcuts based on the commutativity principle. PLoS ONE, 8(9), e74972.

    Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin.

    Google Scholar 

  • Glenberg, A. M. (2008). Embodiment for education. In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: an embodied approach (pp. 355–372). New York: Elsevier.

    Google Scholar 

  • Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565.

    Google Scholar 

  • Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Educational Psychology, 96(3), 424–436.

    Google Scholar 

  • Glenberg, A., Willford, J., Gibson, B., Goldberg, A., & Zhu, X. (2011a). Improving reading to improve math. Scientific Studies of Reading, 16, 316–340.

    Google Scholar 

  • Glenberg, A. M., Goldberg, A. B., & Zhu, X. (2011b). Improving early reading comprehension using embodied CAI. Instructional Science, 39(1), 27–39.

    Google Scholar 

  • Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptive systems. Cognitive Psychology, 46(4), 414–466.

    Google Scholar 

  • Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The Journal of the Learning Sciences, 14(1), 69–110.

    Google Scholar 

  • Gonzalez, J., Barros-Loscertales, A., Pulvermuller, F., Meseguer, V., & Sanjuán, A. (2006). Reading cinnamon activates olfactory brain regions. NeuroImage, 32, 906–912.

    Google Scholar 

  • Gray, W. D., & Fu, W. (2004). Soft constraints in interactive behavior: the case of ignoring perfect knowledge in-the-world for imperfect knowledge in-the-head. Cognitive Science, 28(3), 359–382.

    Google Scholar 

  • Gray, W. D., Sims, C. R., Fu, W.-T., & Schoelles, M. J. (2006). The soft constraints hypothesis: a rational analysis approach to resource allocation for interactive behavior. Psychological Review, 113, 461–482.

    Google Scholar 

  • Han, I., & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57(4), 2281–2290.

    Google Scholar 

  • Haselen, G. L. V., van der Steen, J., & Frens, M. A. (2000). Copying strategies for patterns by children and adults. Perceptual and Motor Skills, 91(2), 603–615.

    Google Scholar 

  • Hatano, G., & Osawa, K. (1983). Digit memory of grand experts in abacus-derived mental calculation. Cognition, 15(1), 95–110.

    Google Scholar 

  • Hatano, G., Miyake, Y., & Binks, M. G. (1977). Performance of expert abacus operators. Cognition, 5(1), 47–55.

    Google Scholar 

  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.

    Google Scholar 

  • Hayhoe, M. M., Pook, P. K., & Rao, R. P. N. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20, 723–767.

    Google Scholar 

  • Hutchins, E. (1995). Cognition in the wild. Cambridge: MIT Press.

    Google Scholar 

  • Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577.

    Google Scholar 

  • Johnson, A. M., Reisslein, J., & Reisslein, M. (2014). Representation sequencing in computer-based engineering education. Computers & Education, 72, 249-261.

    Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). Learning theory: the advantage of abstract examples in learning math. Science, 320(5875), 454–455.

    Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2009a). Transfer of mathematical knowledge: the portability of generic instantiations. Child Development Perspectives, 3(3), 151–155.

    Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2009a). The devil is in the superficial details: why generic instantiations promote portable mathematical knowledge. Child Development Perspectives, 3, 151–155.

    Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2013). The cost of concreteness: the effect of nonessential information on analogical transfer. Journal of Experimental Psychology: Applied, 19(1), 14–29.

    Google Scholar 

  • Kastens, K. A., Liben, L. S., & Agrawal, S. (2008). Epistemic actions in science education. In C. Freksa, N. S. Newcombe, P. Gardenfors, & S. W. Wölfl (Eds.), Proceedings of the International Conference on Spatial Cognition VI: learning, reasoning, and talking about space (pp. 205–215). Heidelberg: Springer.

    Google Scholar 

  • Kiefer, M., & Trumpp, N. M. (2012). Embodiment theory and education: the foundations of cognition in perception and action. Trends in Neuroscience and Education, 1, 15–20.

    Google Scholar 

  • Kirsh, D. (1995). The intelligent use of space. Artificial Intelligence, 73(1), 31–68.

    Google Scholar 

  • Kirsh, D. (2009). Projection, problem space and anchoring. In Proceedings of the 31st annual conference of the cognitive science society (pp. 2310–2315). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kirsh, D. (2010). Thinking with external representations. AI & Society, 25(4), 441–454.

    Google Scholar 

  • Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513–549.

    Google Scholar 

  • Klahr, D., Triona, L., Lara, M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183–203.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: the embodied mind and its challenge to Western thought. New York: Basic Books.

    Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: how the embodied mind brings mathematics into being. New York: Basic books.

    Google Scholar 

  • Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 720–733.

    Google Scholar 

  • Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment six precepts for research on embodied learning and mixed reality. Educational Researcher, 42(8), 445–452.

    Google Scholar 

  • Manches, A. D., & O’Malley, C. (2012). Tangibles for learning: a representational analysis of physical manipulation. Personal and Ubiquitous Computing, 16(4), 405–419.

    Google Scholar 

  • Manches, A., O’Malley, C., & Benford, S. (2010). The role of physical representations in solving number problems: a comparison of young children’s use of physical and virtual materials. Computers & Education, 54(3), 622–640.

    Google Scholar 

  • Markman, A., & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467.

    Google Scholar 

  • Marley, S. C., Levin, J. R., & Glenberg, A. M. (2007). Improving Native American children’s listening comprehension through concrete representations. Contemporary Educational Psychology, 32(3), 537–550.

    Google Scholar 

  • Marley, S. C., Szabo, Z., Leven, J. R., & Glenberg, A. M. (2011). Investigation of an activity-based text-processing strategy in mixed-age child dyads. The Journal of Experimental Education, 79(3), 340–360.

    Google Scholar 

  • Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45.

    Google Scholar 

  • Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: adapting and reinterpreting physical environments in the development of fraction concepts. Cognitive Science, 29(4), 587–625.

    Google Scholar 

  • Martin, T., Lukong, A., & Reaves, R. (2007). The role of manipulatives in arithmetic and geometry tasks [Electronic version]. Journal of Education and Human Development, 1, 1–10.

    Google Scholar 

  • McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness Fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22, 440–448.

    Google Scholar 

  • McNeil, N. M., & Jarvin, L. (2007). When theories don’t add up: disentangling he manipulatives debate. Theory into Practice, 46(4), 309–316.

    Google Scholar 

  • Morris, D., Tan, H., Barbagli, F., Chang, T., & Salisbury, K. (2007). Haptic feedback enhances force skill learning. In EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007. Second Joint (pp. 21–26).

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8, 372–377.

    Google Scholar 

  • Nathan, M. J. (2008). An Embodied Cognition perspective on symbols, gesture, and grounding instruction. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols and embodiment: debates on meaning and cognition (pp. 375–396). New York: Oxford University Press.

    Google Scholar 

  • Nathan, M. J. (2012). Rethinking formalisms in formal education. Educational Psychologist, 47(2), 125–148.

    Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Norman, D. A. (1988). The psychology of everyday things. New York: Basic books.

    Google Scholar 

  • O’Malley, C., & Stanton-Fraser, D. (2004). Literature review in learning with tangible technologies (Report 12). Bristol: Nesta FutureLab Series.

    Google Scholar 

  • Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: an effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21–47.

    Google Scholar 

  • Olympiou, G., Zacharia, Z. C., de Jong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575-587.

    Google Scholar 

  • Osman, M. (2010). Observation can be as effective as action in problem solving. Cognitive Science, 32(1), 162–183.

    Google Scholar 

  • Page, M. (1990). Active learning: historical and contemporary perspectives. Unpublished manuscript, University of Massachusetts. Amherst: ERIC Document Reproduction Service, No. ED 338389.

    Google Scholar 

  • Pecher, D., & Zwaan, R. A. (2005). Grounding cognition: the role of perception and action in memory, language, and thinking. Cambridge: Cambridge University Press.

    Google Scholar 

  • Radman, Z. (2013). The hand, an organ of the mind. Massachusetts: MIT Press.

    Google Scholar 

  • Resnick, L., & Omanson, S. (1987). Learning to understand arithmetic. Hillsdale: Advances in instructional psychology.

    Google Scholar 

  • Risko, E.F., Medimorec, S., Chisholm, J.D., & Kingstone, A. (2013). Cognitive offloading in the identification of rotated objects: A natural behavior approach. Cognitive Science. doi:10.1111/cogs.12087.

  • Roux, F.-E., Boetto, S., Sacko, O., Chollet, F., & Tremoulet, M. (2003). Writing, calculating, and finger recognition in the region of the angular gyrus: a cortical stimulation study of Gerstmann syndrome. Journal of Neurosurgery, 99, 716–727.

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2009). ‘Concrete’ computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150.

    Google Scholar 

  • Scheiter, K., Gerjets, P., & Schuh, J. (2010). The acquisition of problem-solving skills in mathematics: how animations can aid understanding of structural problem features and solution procedures. Instructional Science, 38(5), 487–502.

    Google Scholar 

  • Schwartz, D. L., & Martin, T. (2006). Distributed learning and mutual adaptation. Pragmatics & Cognition, 14(2), 313–332.

    Google Scholar 

  • Shaer, O., & Hornecker, E. (2010). Tangible user interfaces: past, present, and future directions. Foundations and Trends in Human-Computer Interaction, 3(1–2), 1–137.

    Google Scholar 

  • Shapiro, L. A. (2011). Embodied cognition. New York: Routledge.

    Google Scholar 

  • Sherman, J., & Bisanz, M. (2009). Equivalence in symbolic and nonsymbolic contexts: benefits of solving problems with manipulatives. Journal of Educational Psychology, 101(1), 88–100.

    Google Scholar 

  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychonomic Bulletin & Review, 20, 21–53.

    Google Scholar 

  • Sloutsky, V. M., Kaminski, J. A., & Heckler, A. F. (2005). The advantage of simple symbols for learning and transfer. Psychonomic Bulletin & Review, 12(3), 508–513.

    Google Scholar 

  • Snow, J. C., Pettypiece, C. E., McAdam, T. D., Mclean, A. D., Stroman, P. W., Goodale, M. A., et al. (2011). Bringing the real world into the fMRI scanner: repetition effects for pictures versus real objects. Scientific Reports, 1(130), 1–10.

    Google Scholar 

  • Son, J. Y., Smith, L. B., Goldstone, R. L., & Leslie, M. (2012). The importance of being interpreted: grounded words and children’s relational reasoning. Frontiers in Psychology, 3(45), 1–12.

    Google Scholar 

  • Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition & Instruction, 30(4), 404–434.

    Google Scholar 

  • Stull, A. T., Barrett, T., & Hegarty, M. (2013). Usability of concrete and virtual models in chemistry instruction. Computers in Human Behavior, 29(6), 2546–2556.

    Google Scholar 

  • Svensson, H. (2007). Embodied simulation as off-line representation. Licentiate thesis, University of Linköping/University of Skövde, Sweden.

  • Symes, E., Ellis, R., & Tucker, M. (2007). Visual object affordances: object orientation. Acta Psychologica, 124(2), 238–255.

    Google Scholar 

  • Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21(2), 149–173.

    Google Scholar 

  • Triona, L. M., Klahr, D., & Williams, C. (2005). Point and click or build by hand: comparing the effects of physical vs. virtual materials on middle school students’ ability to optimize an engineering Design. In Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 2202–2205).

  • Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: a new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18(1), 37–54.

    Google Scholar 

  • Uttal, D. H., O’Doherty, K., Newland, R., Hand, L. L., & Deloache, J. S. (2009). Dual representation and the linking of concrete and symbolic representations. Child Development Perspectives, 3(3), 156–159.

    Google Scholar 

  • van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: a unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Physics of Life Reviews. doi:10.1016/j.plrev.2013.11.005.

    Google Scholar 

  • Van Gog, T., & Rummel, N. (2010). Example-based learning: integrating cognitive and social–cognitive research perspectives. Educational Psychology Review, 22, 155–174.

    Google Scholar 

  • Wheeler, M. (2007). Reconstructing the cognitive world: the next step. Cambridge: MIT Press.

    Google Scholar 

  • Wilson, M. (2002). Six views of Embodied Cognition. Psychonomic Bulletin & Review, 9(4), 625–636.

    Google Scholar 

  • Winn, W. (2003). Learning in artificial environments: embodiment, embeddedness and dynamic adaptation. Technology, Instruction, Cognition and Learning, 1(1), 87–114.

    Google Scholar 

  • Zacharia, Z. C., & Constantinou, C. P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: the case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76, 425–430.

    Google Scholar 

  • Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317–331.

    Google Scholar 

  • Zacharia, Z. C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students? Early Childhood Research Quarterly, 27(3), 447–457.

    Google Scholar 

  • Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13, 314–327.

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Netherlands Organization for Scientific Research (NWO; project number 411-10-908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim T. J. L. Pouw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouw, W.T.J.L., van Gog, T. & Paas, F. An Embedded and Embodied Cognition Review of Instructional Manipulatives. Educ Psychol Rev 26, 51–72 (2014). https://doi.org/10.1007/s10648-014-9255-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-014-9255-5

Keywords

Navigation