Educational Psychology Review

, Volume 26, Issue 2, pp 265–283 | Cite as

Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work

Review Article

Abstract

Domain-general cognitive knowledge has frequently been used to explain skill when domain-specific knowledge held in long-term memory may provide a better explanation. An emphasis on domain-general knowledge may be misplaced if domain-specific knowledge is the primary factor driving acquired intellectual skills. We trace the long history of attempts to explain human cognition by placing a primary emphasis on domain-general skills with a reduced emphasis on domain-specific knowledge and indicate how otherwise unintelligible data can be easily explained by assumptions concerning the primacy of domain-specific knowledge. That primacy can be explained by aspects of evolutionary educational psychology. Once the importance of domain-specific knowledge is accepted, instructional design theories and processes are transformed.

Keywords

Domain-specific knowledge Learning Instruction General skills Cognitive load theory 

References

  1. Ackerman, P. L. (2000). Domain-specific knowledge as the "Dark matter" of adult intelligence: Gf/Gc, personality and interest correlates. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 55, 69–84.CrossRefGoogle Scholar
  2. Amadieu, F., Tricot, A., & Mariné, C. (2009). Effects of prior knowledge diversity on learning with a non-linear electronic document: Disorientation and coherence of the reading sequence. Computers in Human Behavior, 25, 381–388. doi:10.1016/j.chb.2008.12.017.CrossRefGoogle Scholar
  3. Anzai, Y., & Simon, H. A. (1979). Theory of learning by doing. Psychological Review, 86, 124–140. doi:10.1037//0033-295x.86.2.124.CrossRefGoogle Scholar
  4. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). New York: Academic Press.Google Scholar
  5. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.Google Scholar
  6. Bainbridge, L. (1975). Working memory in air-traffic control. Unpublished paper, University of Reading. Retrieved December 11, 2011, from http://www.bainbrdg.demon.co.uk/Papers/WMemory.html.
  7. Binet, A. (1892). Le calculateur Jacques Inaudi [The calculator Jacques Inaudi]. Revue des deux Mondes, 111, 905–924.Google Scholar
  8. Binet, A. (1894). Psychologie des grands calculateurs et joueurs d’échecs [Psychology of great calculators and chess players]. Paris: Hachette.Google Scholar
  9. Bisseret, A. (1970). Mémoire opérationelle et structure du travail [Working memory and work structure]. Bulletin de Psychologie, 24, 280-294. English summary published in 1971: Analysis of mental processes involved in air traffic control. Ergonomics, 14, 565-570.Google Scholar
  10. Brinch, C. N. (2012). Schooling in adolescence raises IQ scores. Proceedings of The National Academy of Sciences of The United States of America, 109, 425–430. doi:10.1073/pnas.1106077109.CrossRefGoogle Scholar
  11. Cahan, S., & Cohen, N. (1989). Age versus schooling effects on intelligence development. Child Development, 60, 1239–1249. doi:10.1111/j.1467-8624.1989.tb03554.x.CrossRefGoogle Scholar
  12. Chanquoy, L., Tricot, A., & Sweller, J. (2007). La charge cognitive. Paris: Armand Colin.Google Scholar
  13. Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 16, pp. 1–58). New York: Academic Press.Google Scholar
  14. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81. doi:10.1016/0010-0285(73)90004-2.CrossRefGoogle Scholar
  15. Chi, M. T. H. (1978). Knowledge structures and memory development. In R. Siegler (Ed.), Children’s thinking: What develops? (pp. 73–96). Hillsdale, NJ: Erlbaum.Google Scholar
  16. Chi, M. T. H. (1993). Experts vs novices knowledge—A citation-classic commentary on categorization and representation of physics problems by experts and novices by Chi, M.T.H., Feltovich, P., Glaser, R. Current Contents/Social & Behavioral Sciences, 42, 8-8.Google Scholar
  17. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152. doi:10.1207/s15516709cog0502_2.CrossRefGoogle Scholar
  18. Chiesi, H. L., Spilich, G. J., & Voss, J. F. (1979). Acquisition of domain-related information in relation to high and low domain knowledge. Journal of Verbal Learning and Verbal Behavior, 18, 257–273. doi:10.1016/s0022-5371(79)90146-4.CrossRefGoogle Scholar
  19. Cliffordson, C., & Gustafsson, J. E. (2008). Effects of age and schooling on intellectual performance: Estimates obtained from analysis of continuous variation in age and length of schooling. Intelligence, 36, 143–152. doi:10.1016/j.intell.2007.03.006.CrossRefGoogle Scholar
  20. Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. (Eds.), (2007). Variation in working memory. Oxford University Press.Google Scholar
  21. Cowan, N. (2005). Working memory capacity. Hove: Psychology Press.CrossRefGoogle Scholar
  22. De Groot, A. (1965). Thought and choice in chess. The Hague, The Netherlands: Mouton (Original work published 1946).Google Scholar
  23. Dehaene, S. (1997). The number sense. New York: Oxford University Press.Google Scholar
  24. Duncan, R. G. (2007). The role of domain-specific knowledge in generative reasoning about complicated multileveled phenomena. Cognition & Instruction, 25, 271–336.CrossRefGoogle Scholar
  25. Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall of symbolic drawings. Memory & Cognition, 7, 149–158. doi:10.3758/bf03197595.CrossRefGoogle Scholar
  26. Ericsson, K. A. (1985). Memory skill. Canadian Journal of Psychology, 39, 188–231. doi:10.1037/h0080059.CrossRefGoogle Scholar
  27. Ericsson, K. A., & Charness, N. (1994). Expert performance—Its structure and acquisition. American Psychologist, 49, 725–747. doi:10.1037/0003-066x.49.8.725.CrossRefGoogle Scholar
  28. Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory. American Scientist, 70, 607–615.Google Scholar
  29. Ericsson, K. A., & Kintsch, W. (1995). Long-term working-memory. Psychological Review, 102, 211–245. doi:10.1037//0033-295x.102.2.211.CrossRefGoogle Scholar
  30. Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273–305. doi:10.1146/annurev.psych.47.1.273.CrossRefGoogle Scholar
  31. Ericsson, K. A., Krampe, R. T., & Teschromer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406. doi:10.1037/0033-295x.100.3.363.CrossRefGoogle Scholar
  32. Fayol, M. (1994). From declarative and procedural knowledge to the management of declarative and procedural knowledge. European Journal of Psychology of Education, 9, 179–190.CrossRefGoogle Scholar
  33. Flynn, J. R. (2007). What is intelligence? Beyond the Flynn effect. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  34. Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179–195. doi:10.1080/00461520802392133.CrossRefGoogle Scholar
  35. Geary, D. C. (2012). Evolutionary educational psychology. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (Vol. 1, pp. 597–621). Washington, D.C.: American Psychological Association.Google Scholar
  36. Gijlers, H., & de Jong, T. (2005). The relation between prior knowledge and students’ collaborative discovery learning processes. Journal of Research in Science Teaching, 42, 264–282. doi:10.1002/tea.20056.CrossRefGoogle Scholar
  37. Greiff, S., Wüstenberg, S., Molnar, G., Fischer, A., Funke, J., & Csapo, B. (2013). Complex problem solving in educational settings—Something beyond g: Concept, assessment, measurement invariance, and construct validity. Journal of Educational Psychology, 105, 364–379. doi:10.1037/a0031856.CrossRefGoogle Scholar
  38. Herrnstein, R. J., & Murray, C. (1994). The Bell curve: Intelligence and class structure in American life. New York: Free Press.Google Scholar
  39. Jeffries, R., Turner, A., Polson, P., & Atwood, M. (1981). Processes involved in designing software. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 255–283). Hillsdale, NJ: Erlbaum.Google Scholar
  40. Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579–588. doi:10.1037/0022-0663.93.3.579.CrossRefGoogle Scholar
  41. Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist, 41, 75–86.CrossRefGoogle Scholar
  42. Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4, 317–345. doi:10.1207/s15516709cog0404_1.CrossRefGoogle Scholar
  43. Mandelbaum, E. (2013). Numerical architecture. Topics in Cognitive Science, 5, 367–386. doi:10.1111/tops.12014.CrossRefGoogle Scholar
  44. Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology Applied, 8, 147–154. doi:10.1037//1076-898x.8.3.147.CrossRefGoogle Scholar
  45. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.CrossRefGoogle Scholar
  46. Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart & Winston.CrossRefGoogle Scholar
  47. Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51, 77–101. doi:10.1037/0003-066x.51.2.77.CrossRefGoogle Scholar
  48. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  49. Nicolas, S., Gounden, Y., & Levine, Z. (2011). The memory of two great mental calculators: Charcot and Binet’s neglected 1893 experiments. American Journal of Psychology, 124, 235–242.CrossRefGoogle Scholar
  50. Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24, 27–45. doi:10.1007/s10648-011-9179-2.CrossRefGoogle Scholar
  51. Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15, 1–12.CrossRefGoogle Scholar
  52. Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning & Instruction, 12, 61–86. doi:10.1016/s0959-4752(01)00016-0.CrossRefGoogle Scholar
  53. Rikers, R.M.J.P. (2009). Why is not everyone Albert Einstein? Implications of expertise research for educational practice. Cognitive Load Theory Conference, Open University of The Netherlands, Heerlen, March 2-4.Google Scholar
  54. Schneider, W., Korkel, J., & Weinert, F. E. (1989). Domain-specific knowledge and memory performance: A comparison of high- and low-aptitude children. Journal of Educational Psychology, 81, 306–312. doi:10.1037/0022-0663.81.3.306.CrossRefGoogle Scholar
  55. Simon, H. A., & Gilmarti, K. (1973). Simulation of memory for chess positions. Cognitive Psychology, 5, 29–46. doi:10.1016/0010-0285(73)90024-8.CrossRefGoogle Scholar
  56. Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In R. Siegler (Ed.), Children’s thinking: What develops? (pp. 325–348). Hillsdale, NJ: Erlbaum.Google Scholar
  57. Stein, E. S., Garland, D. J., & Muller, J. K. (2010). Air-traffic controller memory. In J.A. Wise, V.D. Hopkin, & D.J. Garland (Eds.). Handbook of aviation human factors (2nd Edition). (pp. 21-1–21-39). Boca Raton: CRC Press.Google Scholar
  58. Stelzl, I., Merz, F., Ehlers, T., & Remer, H. (1995). The effect of schooling on the development of fluid and crystallized intelligence: A quasi-experimental study. Intelligence, 21, 279–296. doi:10.1016/0160-2896(95)90018-7.CrossRefGoogle Scholar
  59. Sweller, J. (2011). Cognitive load theory. In J. Mestre & B. Ross (Eds.), The psychology of learning and motivation: Cognition in education (Vol. 55, pp. 37–76). Oxford: Academic Press.Google Scholar
  60. Sweller, J. (2012). Human cognitive architecture: Why some instructional procedures work and others do not. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (Vol. 1, pp. 295–325). Washington, D.C.: American Psychological Association.Google Scholar
  61. Sweller, J., & Cooper, G. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition & Instruction, 2, 59–89.CrossRefGoogle Scholar
  62. Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434–458.Google Scholar
  63. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.CrossRefGoogle Scholar
  64. Yntema, D. B. (1963). Keeping track of several things at once. Human Factors, 5, 7–17.Google Scholar
  65. Yntema, D. B., & Mueser, G. E. (1960). Remembering the present states of a number of variables. Journal of Experimental Psychology, 60, 18–22. doi:10.1037/h0040055.CrossRefGoogle Scholar
  66. Yntema, D. B., & Mueser, G. E. (1962). Keeping track of variables that have few or many states. Journal of Experimental Psychology, 63, 391–395. doi:10.1037/h0045706.CrossRefGoogle Scholar
  67. Youssef, A., Ayres, P., & Sweller, J. (2012). Using general problem-solving strategies to generate ideas in order to solve geography problems. Applied Cognitive Psychology, 26, 872–877. doi:10.1002/acp.2888.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.CNRS and University of ToulouseToulouseFrance
  2. 2.School of EducationUniversity of New-South WalesSydneyAustralia
  3. 3.CLLE InstituteCNRS and University of ToulouseToulouseFrance

Personalised recommendations