Skip to main content

Educational Implications of Expertise Reversal Effects in Learning and Performance of Complex Cognitive and Sensorimotor Skills

Abstract

There have been several rather counterintuitive phenomena observed in different fields of research that compared the performance of experts and novices. For example, studies of medical expertise demonstrated that less experienced medical students may in some situations outperform seasoned medical practitioners on recall of specific cases. Studies of cognitive load aspects of complex skill acquisition in technical and academic domains demonstrated that more experienced technical trainees or students may learn less than expected from instructions that are very effective for novices. Finally, research in the execution of movements in sports showed that, while novice players performed well under skill-focused and accuracy conditions, such conditions inhibited performance of experts who benefitted from speed conditions. Apparently, in each of those phenomena, there is a mechanism that disrupted successful expert performance while, at the same time, enhanced performance of less experienced individuals. This paper presents a review of the expertise reversal effects that have been found in the different fields and identifies their specific underlying mechanisms and common origins. Knowledge of theoretical models and empirical findings in one of those fields could enrich research ideas and approaches in others. The implications of these ideas for research aimed at improving learning and instruction are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150.

    Google Scholar 

  2. Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions. Psychological Review, 94, 192–210.

    Article  Google Scholar 

  3. Baumeister, R. F. (1984). Choking under pressure: Self-consciousness and paradoxical effects of incentives on skillful performance. Journal of Personality and Social Psychology, 46, 610–620.

    Article  Google Scholar 

  4. Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130, 701–725.

    Article  Google Scholar 

  5. Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “choking under pressure” in math. Psychological Science, 16, 101–105.

    Article  Google Scholar 

  6. Beilock, S. L., Wierenga, S. A., & Carr, T. H. (2002). Expertise, attention, and memory in sensorimotor skill execution: Impact of novel task constraints on dual-task performance and episodic memory. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 55A, 1211–1240.

    Google Scholar 

  7. Beilock, S. L., Bertenthal, B. I., McCoy, A. M., & Carr, T. H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills. Psychonomic Bulletin & Review, 11, 373–379.

    Article  Google Scholar 

  8. Beilock, S. L., Jellison, W. A., Rydell, R. J., McConnell, A. R., & Carr, T. H. (2006). On the causal mechanisms of stereotype threat: Can skills that don’t rely heavily on working memory still be threatened? Personality and Social Psychology Bulletin, 32, 1059–1071.

    Article  Google Scholar 

  9. Bennett, H. L. (1983). Remembering drink orders: The memory skill of cocktail waitresses. Human Learning, 2, 157–169.

    Google Scholar 

  10. Blayney, P., Kalyuga, S., & Sweller, J. (2010). Interactions between the isolated–interactive elements effect and levels of learner expertise: Experimental evidence from an accountancy class. Instructional Science, 38, 277–287.

    Article  Google Scholar 

  11. Bordage, G. (1994). Elaborated knowledge: A key to successful diagnostic thinking. Academic Medicine, 69, 883–885.

    Article  Google Scholar 

  12. Boshuizen, H. P. A., & Schmidt, H. G. (1992). On the role of biomedical knowledge in clinical reasoning by experts, intermediates and novices. Cognitive Science, 16, 153–184.

    Article  Google Scholar 

  13. Butler, J. L., & Baumeister, R. F. (1998). The trouble with friendly faces: Skilled performance with a supportive audience. Journal of Personality and Social Psychology, 75, 1213–1230.

    Article  Google Scholar 

  14. Camerer, C. F., & Johnson, E. J. (1991). The process–performance paradox in expert judgment: How can experts know so much and predict so badly? In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise (pp. 195–217). Cambridge: Cambridge University Press.

    Google Scholar 

  15. Chamberland, M., St-Onge, C., Setrakian, J., Lanthier, L., Bergeron, L., Bourget, A., Mamede, S., Schmidt, H., & Rikers, R. (2011). The influence of medical students' self-explanations on diagnostic performance. Medical Education, 45, 688–695.

    Article  Google Scholar 

  16. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.

    Article  Google Scholar 

  17. Chi, M. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.

    Google Scholar 

  18. Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53, 15–24.

    Article  Google Scholar 

  19. Cronbach, L. (1967). How can instruction be adapted to individual differences. In R. Gagne (Ed.), Learning and individual differences (pp. 23–39). Columbus: Merrill.

    Google Scholar 

  20. Cronbach, L., & Snow, R. (1977). Aptitudes and instructional methods: A handbook for research on interactions. New York: Irvington.

    Google Scholar 

  21. Custers, E. J. F. M., Boshuizen, H. P. A., & Schmidt, H. G. (1998). The role of illness scripts in the development of medical diagnostic expertise: Results from an interview study. Cognition and Instruction, 16, 367–398.

    Article  Google Scholar 

  22. De Bruin, A. B. H., Van De Wiel, M. W. J., Rikers, R. M. J. P., & Schmidt, H. G. (2005). Examining the stability of experts’ clinical case processing: An experimental manipulation. Instructional Science, 33, 251–270.

    Article  Google Scholar 

  23. De Groot, A. (1965). Thought and choice in chess. The Hague: Mouton. (Original work published 1946).

  24. Dunning, D., Johnson, K., Erlinger, J., & Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12, 83–87.

    Article  Google Scholar 

  25. Dunning, D., Heath, C., & Suls, J. M. (2004). Flawed self-assessment: Implications for health, education, and the workplace. Psychological Science in the Public Interest, 5, 69–106.

    Article  Google Scholar 

  26. Ericsson, K. A. (1985). Memory skill. Canadian Journal of Psychology, 39, 188–231.

    Article  Google Scholar 

  27. Ericsson, K. A. (2005). Recent advances in expertise research: A commentary on the contributions to the special issue. Applied Cognitive Psychology, 19, 233–241.

    Article  Google Scholar 

  28. Ericsson, K. A. (2006). The influence of experience and deliberate practice on the development of superior expert performance. In K. A. Ericsson, N. Charness, R. R. Hoffman, & P. J. Feltovich (Eds.), The Cambridge handbook of expertise and expert performance (pp. 39–68). New York: Cambridge University Press.

    Google Scholar 

  29. Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Maximal adaptation to task constraints. Annual Review of Psychology, 47, 273–305.

    Article  Google Scholar 

  30. Ericsson, K. A., & Polson, P. G. (1988). A cognitive analysis of exceptional memory for restaurant orders. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise. Hillsdale: Erlbaum.

    Google Scholar 

  31. Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge: Bradford Books/MIT Press.

    Google Scholar 

  32. Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (Rev. Ed.). Cambridge: Bradford Books/MIT Press.

    Google Scholar 

  33. Eva, K. W., Norman, G. R., Neville, A. J., Wood, T. J., & Brooks, L. R. (2002). Expert–novice differences in memory: A reformulation. Teaching and Learning in Medicine, 14, 257–263.

    Article  Google Scholar 

  34. Feltovich, P. J., & Barrows, H. S. (1984). Issues of generality in medical problem solving. In H. G. Schmidt & M. L. De Volder (Eds.), Tutorials in problem-based learning (pp. 128–142). Assen: Van Gorcum.

    Google Scholar 

  35. Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont: Brooks/Cole.

    Google Scholar 

  36. Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic.

    Google Scholar 

  37. Gilhooly, K. J., & Simpson, S. (1992). Deep knowledge in human medical expertise. In E. Keravnou (Ed.), Deep models for medical knowledge in engineering (pp. 273–285). Amsterdam: Elsevier.

    Google Scholar 

  38. Gobet, F., & Simon, H. A. (1996). Recall of rapidly presented random chess positions is a function of skill. Psychonomic Bulletin & Review, 3, 159–163.

    Article  Google Scholar 

  39. Gray, R. (2004). Attending to the execution of a complex sensorimotor skill: Expertise differences, choking, and slumps. Journal of Experimental Psychology: Applied, 10, 42–54.

    Article  Google Scholar 

  40. Gucciardi, D. F., & Dimmock, J. A. (2008). Choking under pressure in sensorimotor skills: Conscious processing or depleted attentional resources? Psychology of Sport and Exercise, 9, 45–59.

    Article  Google Scholar 

  41. Haerem, T., & Rau, D. (2007). The influence of degree of expertise and objective task complexity on perceived task complexity and performance. Journal of Applied Psychology, 92, 1320–1331.

    Article  Google Scholar 

  42. Jensen, A. R. (1990). Speed of information processing in a calculating prodigy. Intelligence, 14, 259–274.

    Article  Google Scholar 

  43. Jordet, G., & Hartman, E. (2008). Avoidance motivation and choking under pressure in soccer penalty shootouts. Journal of Sport & Exercise Psychology, 30, 450–457.

    Google Scholar 

  44. Kalyuga, S. (2006a). Assessment of learners’ organized knowledge structures in adaptive learning environments. Applied Cognitive Psychology, 20, 333–342.

    Article  Google Scholar 

  45. Kalyuga, S. (2006b). Rapid cognitive assessment of learners’ knowledge structures. Learning and Instruction, 16, 1–11.

    Article  Google Scholar 

  46. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.

    Article  Google Scholar 

  47. Kalyuga, S. (2008). When less is more in cognitive diagnosis: A rapid assessment method for adaptive learning environments. Journal of Educational Psychology, 100, 603–612.

    Article  Google Scholar 

  48. Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really need? Educational Psychology Review, 23, 1–19.

    Article  Google Scholar 

  49. Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications. Instructional Science, 38, 209–215.

    Article  Google Scholar 

  50. Kalyuga, S., & Sweller, J. (2004). Measuring knowledge to optimize cognitive load factors during instruction. Journal of Educational Psychology, 96, 558–568.

    Article  Google Scholar 

  51. Kalyuga, S., & Sweller, J. (2005). Rapid dynamic assessment of expertise to improve the efficiency of adaptive e-learning. Educational Technology Research and Development, 53, 83–93.

    Article  Google Scholar 

  52. Kalyuga, S., Chandler, P., & Sweller, J. (1998). Levels of expertise and instructional design. Human Factors, 40, 1–17.

    Article  Google Scholar 

  53. Kalyuga, S., Chandler, P., & Sweller, J. (2000). Incorporating learner experience into the design of multimedia instruction. Journal of Educational Psychology, 92, 126–136.

    Article  Google Scholar 

  54. Kalyuga, S., Chandler, P., & Sweller, J. (2001a). Learner experience and efficiency of instructional guidance. Educational Psychology, 21, 5–23.

    Article  Google Scholar 

  55. Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001b). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579–588.

    Google Scholar 

  56. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.

    Article  Google Scholar 

  57. Kalyuga, S., Renkl, A., & Paas, F. (2010). Facilitating flexible problem solving: A cognitive load perspective. Educational Psychology Review, 22, 175–186.

    Article  Google Scholar 

  58. Lewis, B. P., & Linder, D. E. (1997). Thinking about choking? Attentional processes and paradoxical performance. Personality and Social Psychology Bulletin, 23, 937–944.

    Article  Google Scholar 

  59. Lombrozo, T. (2006). The structure and function of explanations. Trends in Cognitive Sciences, 10, 464–470.

    Article  Google Scholar 

  60. Luchins, A. S., & Luchins, E. H. (1987). Einstellung effects. Science, New Series, 238(4827), 598. (Oct. 30, 1987).

  61. Masters, R. S. W. (1992). Knowledge, knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. British Journal of Psychology, 83, 343–358.

    Article  Google Scholar 

  62. Newell, A. (1991). Motor skill acquisition. Annual Review of Psychology, 42, 213–237.

    Article  Google Scholar 

  63. Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259.

    Article  Google Scholar 

  64. Norman, G. R., Brooks, L. R., & Allen, S. W. (1989). Recall by expert medical practitioners and novices as a record of processing attention. Journal of Experimental Psychology: Learning, Memory and Cognition, 15, 1166–1174.

    Google Scholar 

  65. Oksa, A., Kalyuga, S., & Chandler, P. (2010). Expertise reversal effect in using explanatory notes for readers of Shakespearean text. Instructional Science, 38, 217–236.

    Article  Google Scholar 

  66. Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429–434.

    Article  Google Scholar 

  67. Paas, F., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.

    Article  Google Scholar 

  68. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.

    Article  Google Scholar 

  69. Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1–8.

    Article  Google Scholar 

  70. Paas, F., Tuovinen, J. E., Van Merrienboer, J. J. G., & Darabi, A. A. (2005). A motivational perspective on the relation between mental effort and performance. Educational Technology Research and Development, 53, 25–34.

    Article  Google Scholar 

  71. Patel, V. L., & Groen, G. J. (1986). Knowledge based solution strategies in medical reasoning. Cognitive Science, 10, 91–116.

    Article  Google Scholar 

  72. Patel, V. L., & Groen, G. J. (1991). Developmental accounts of the transition from medical student to doctor: Some problems and suggestions. Medical Education, 25, 527–535.

    Article  Google Scholar 

  73. Patel, V. L., Evans, D. A., & Groen, G. J. (1989). Biomedical knowledge and clinical reasoning. In D. A. Evans & V. L. Patel (Eds.), Cognitive science in medicine: Biomedical modeling (pp. 53–112). Cambridge: MIT Press.

    Google Scholar 

  74. Patel, V. L., Groen, G. J., & Arocha, J. F. (1990). Medical expertise as a function of task difficulty. Memory and Cognition, 18, 394–406.

    Article  Google Scholar 

  75. Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86.

    Article  Google Scholar 

  76. Reisslein, J., Atkinson, R. K., Seeling, P., & Reisslein, M. (2006). Encountering the expertise reversal effect with a computer-based environment on electrical circuit analysis. Learning and Instruction, 16, 92–103.

    Article  Google Scholar 

  77. Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29.

    Article  Google Scholar 

  78. Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skills acquisition: A cognitive load perspective. Educational Psychologist, 38, 15–22.

    Article  Google Scholar 

  79. Rikers, R. M. J. P., Schmidt, H. G., & Boshuizen, H. P. A. (2000). Knowledge encapsulation and the intermediate effect. Contemporary Educational Psychology, 25, 150–166.

    Article  Google Scholar 

  80. Rikers, R. M. J. P., Schmidt, H. G., & Boshuizen, H. P. A. (2002). On the constraints of encapsulated knowledge: Clinical case representations by medical experts and subexperts. Cognition and Instruction, 20, 27–45.

    Article  Google Scholar 

  81. Rikers, R. M., Loyens, S., te Winkel, W., Schmidt, H. G., & Sins, P. H. (2005). The role of biomedical knowledge in clinical reasoning: A lexical decision study. Academic Medicine, 80, 945–949.

    Article  Google Scholar 

  82. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.

    Article  Google Scholar 

  83. Schmidt, H. G., & Boshuizen, H. P. A. (1992). Encapsulation of biomedical knowledge. In D. A. Evans & V. L. Patel (Eds.), Advanced models of cognition for medical training and practice (pp. 265–282). New York: Springer.

    Google Scholar 

  84. Schmidt, H. G., & Boshuizen, H. P. A. (1993). On the origin of intermediate effects in clinical case recall. Memory and Cognition, 21, 338–351.

    Article  Google Scholar 

  85. Schmidt, H. G., & Rikers, R. M. J. P. (2007). How expertise develops in medicine: Knowledge encapsulation and illness script formation. Medical Education, 41, 1133–1139.

    Google Scholar 

  86. Schmidt, H. G., Boshuizen, H. P. A., & Hobus, P. P. M. (1988). Transitory stages in the development of medical expertise: The “intermediate effect” in clinical case representation studies. In Proceedings of the Cognitive Science Society Meeting (pp. 139–145). Hillsdale: Lawrence Erlbaum Associates, Inc.

  87. Schnotz, W. (2010). Reanalyzing the expertise reversal effect. Instructional Science, 38, 315–323.

    Article  Google Scholar 

  88. Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19, 469–508.

    Article  Google Scholar 

  89. Simpson, S. A., & Gilhooly, K. J. (1997). Diagnostic thinking processes: Evidence from a constructive interaction study of electrocardiogram (ECG) interpretation. Applied Cognitive Psychology, 11, 543–554.

    Article  Google Scholar 

  90. Snow, R., & Lohman, D. (1984). Toward a theory of cognitive aptitude for learning from instruction. Journal of Educational Psychology, 76, 347–376.

    Article  Google Scholar 

  91. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123–138.

    Article  Google Scholar 

  92. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  93. Tobias, S. (1976). Achievement treatment interactions. Review of Educational Research, 46, 61–74.

    Google Scholar 

  94. Tobias, S. (1989). Another look at research on the adaptation of instruction to student characteristics. Educational Psychologist, 24, 213–227.

    Article  Google Scholar 

  95. Tobias, S. (2010). The expertise reversal effect and aptitude treatment interaction research. Instructional Science, 38, 309–314.

    Article  Google Scholar 

  96. Tuovinen, J., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and worked examples. Journal of Educational Psychology, 91, 334–341.

    Article  Google Scholar 

  97. Van de Wiel, M. W. J., Boshuizen, H. P. A., & Schmidt, H. G. (2000). Knowledge restructuring in expertise development: Evidence from pathophysiological representations of clinical cases by students and physicians. European Journal of Cognitive Psychology, 12, 323–355.

    Article  Google Scholar 

  98. Van Gog, T., Ericsson, K. A., Rikers, R. M. J. P., & Paas, F. (2005). Instructional design for advanced learners: Establishing connections between the theoretical frameworks of cognitive load and deliberate practice. Educational Technology, Research and Development, 53, 73–81.

    Article  Google Scholar 

  99. Van Merriënboer, J. J. G. (1990). Strategies for programming instruction in high school: Program completion vs. program generation. Journal of Educational Computing Research, 6, 265–287.

    Article  Google Scholar 

  100. Van Merrienboer, J. J. G., & Paas, F. (1990). Automation and schema acquisition in learning elementary computer programming: Implications for the design of practice. Computers in Human Behavior, 6, 273–289.

    Article  Google Scholar 

  101. Verkoeijen, P. P. J. L., Rikers, R. M. J. P., Schmidt, H. G., Van de Wiel, M. W. J., & Kooman, J. P. (2004). Case representation by medical experts, intermediates and novices for laboratory data presented with and without a clinical context. Medical Education, 38, 617–627.

    Article  Google Scholar 

  102. Vincente, K. J., & Wang, J. H. (1998). An ecological theory of expertise effects in memory recall. Psychological Review, 105, 33–57.

    Article  Google Scholar 

  103. Wiley, J. (1998). Expertise as a mental set: The effects of domain knowledge in creative problem solving. Memory & Cognition, 26, 716–730.

    Article  Google Scholar 

  104. Wimmers, P. F., Schmidt, H. G., Verkoeijen, P. P. J. L., & Van de Wiel, M. W. J. (2005). Inducing expertise effects in clinical case recall. Medical Education, 39, 949–957.

    Article  Google Scholar 

  105. Wright, E. F., Jackson, W., Christie, S. D., McGuire, G. R., et al. (1991). The home-course disadvantage in golf championships: Further evidence for the undermining effect of supportive audiences on performance under pressure. Journal of Sport Behavior, 14, 51–60.

    Google Scholar 

  106. Wright, E. F., Voyer, D., Wright, R. D., & Roney, C. (1995). Supporting audiences and performance under pressure: The home-ice disadvantage in hockey championships. Journal of Sport Behavior, 18, 21–28.

    Google Scholar 

  107. Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44, 75–84.

    Article  Google Scholar 

  108. Yeung, A. S., Jin, P., & Sweller, J. (1998). Cognitive load and learner expertise: Split attention and redundancy effects in reading with explanatory notes. Contemporary Educational Psychology, 23, 1–21.

    Article  Google Scholar 

  109. Zimmerman, B. J., & Kitsantas, A. (1997). Developmental phases in self-regulation: Shifting from process goals to outcome goals. Journal of Educational Psychology, 89, 29–36.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Slava Kalyuga.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalyuga, S., Rikers, R. & Paas, F. Educational Implications of Expertise Reversal Effects in Learning and Performance of Complex Cognitive and Sensorimotor Skills. Educ Psychol Rev 24, 313–337 (2012). https://doi.org/10.1007/s10648-012-9195-x

Download citation

Keywords

  • Cognitive load theory
  • Encapsulation theory of medical expertise
  • Attention focusing in execution of complex sensorimotor skills
  • Expertise reversal effect
  • Intermediate effect
  • Explicit monitoring effect