A Cognitive Load Approach to Collaborative Learning: United Brains for Complex Tasks

Abstract

This article presents a review of research comparing the effectiveness of individual learning environments with collaborative learning environments. In reviewing the literature, it was determined that there is no clear and unequivocal picture of how, when, and why the effectiveness of these two approaches to learning differ, a result which may be due to differing complexities of the learning tasks used in the research and the concomitant load imposed on the learner’s cognitive system. Based upon cognitive load theory, it is argued that learning by an individual becomes less effective and efficient than learning by a group of individuals as task complexity increases. Dividing the processing of information across individuals is useful when the cognitive load is high because it allows information to be divided across a larger reservoir of cognitive capacity. Although such division requires that information be recombined and that processing be coordinated, under high load conditions, these costs are minimal compared to the gain achieved by this division of labor. In contrast, under low load conditions, an individual can adequately carry out the required processing activities, and the costs of recombination and coordination are relatively more substantial. Implications of these ideas for research and practice of collaborative learning are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Akkerman, S., Van den Bossche, P., Admiraal, W., Gijselaers, W., Segers, M., Simons, R.-J., et al. (2007). Reconsidering group cognition: From conceptual confusion to a boundary area between cognitive and socio-cultural perspectives? Educational Research Review, 2, 39–63. doi:10.1016/j.edurev.2007.02.001.

    Article  Google Scholar 

  2. Andersson, J., & Rönnberg, J. (1995). Recall suffers from collaboration: Joint recall effects of friendship and task complexity. Applied Cognitive Psychology, 9, 199–211. doi:10.1002/acp.2350090303.

    Article  Google Scholar 

  3. Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied Cognitive Psychology, 20, 287–298. doi:10.1002/acp.1245.

    Article  Google Scholar 

  4. Banich, M. T., & Belger, A. (1990). Interhemispheric interaction: How do the hemispheres divide and conquer a task? Cortex, 26, 77–94.

    PubMed  Google Scholar 

  5. Banich, M. T., Passarotti, A., & Chambers, C. (1994). The role of the corpus callosum in attentional processing. Poster presented at the Inaugural Meeting of the Cognitive Neuroscience Society, San Francisco, California.

  6. Beers, P. J. (2005). Negotiating common ground: Tools for multidisciplinary teams. Unpublished doctoral dissertation, Open University of The Netherlands, Heerlen, The Netherlands.

  7. Beers, P. J., Boshuizen, H. P. A., Kirschner, P. A., & Gijselaers, W. H. (2006). Common ground, complex problems and decision making. Group Decision and Negotiation, 15, 529–556. doi:10.1007/s10726-006-9030-1.

    Article  Google Scholar 

  8. Beers, P. J., Boshuizen, H. P. A., & Kirschner, P. A. (2007). The analysis of negotiation of common ground in CSCL. Learning and Instruction, 17, 427–435. doi:10.1016/j.learninstruc.2007.04.002.

    Article  Google Scholar 

  9. Belger, A., & Banich, M. T. (1992). Interhemispheric interaction affected by computational complexity. Neuropsychologia, 30, 923–929. doi:10.1016/0028-3932(92)90036-L.

    PubMed  Article  Google Scholar 

  10. Brown, R. (2000). Group processes (2nd ed.). Oxford, UK: Blackwell.

    Google Scholar 

  11. De Westelinck, K., Valcke, M., De Craene, B., & Kirschner, P. A. (2005). Multimedia learning in social sciences: Limitations of external graphical representations. Computers in Human Behavior, 21, 555–573. doi:10.1016/j.chb.2004.10.030.

    Article  Google Scholar 

  12. Diehl, M., & Stroebe, W. (1987). Productivity loss in brainstorming groups: Toward the solution of a riddle. Journal of Personality and Social Psychology, 53, 497–509. doi:10.1037/0022-3514.53.3.497.

    Article  Google Scholar 

  13. Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 61–91). Heerlen, The Netherlands: Open University of The Netherlands.

    Google Scholar 

  14. Dourish, P., & Bellotti, V. (1992). Awareness and coordination in shared workspaces. In M. Mantel, & R. Baecker (Eds.), Proceedings of the 1992 ACM conference on computer-supported cooperative work (pp. 107–114). New York: ACM.

    Google Scholar 

  15. Ellis, C. A., Gibbs, S. J., & Rein, G. L. (1991). Groupware: Some issues and experiences. Communications of the ACM, 34, 38–58. doi:10.1145/99977.99987.

    Article  Google Scholar 

  16. Gregor, S. D., & Cuskelly, E. F. (1994). Computer mediated communication in distance education. Journal of Computer Assisted Learning, 10, 168–181. doi:10.1111/j.1365-2729.1994.tb00293.x.

    Article  Google Scholar 

  17. Gutwin, C. (1997). Workspace awareness in real-time distributed groupware. Unpublished doctoral dissertation, University of Calgary, Canada.

  18. Hallet, K., & Cummings, J. (1997). The virtual classroom as authentic experience: Collaborative, problem-based learning in a WWW environment. In Proceedings of the annual conference on distance teaching and learning: Competition–connection–collaboration (pp. 103–107). Madison, WI: University of Wisconsin-Madison.

  19. Hartwick, J., Sheppard, B. H., & Davis, J. H. (1982). Group remembering: Research and implications. In R. A. Guzzo (Ed.), Improving group decision making in organizations (pp. 41–72). New York: Academic.

    Google Scholar 

  20. Heath, E. F. (1998). Two cheers and a pint of worry: An on-line course in political and social philosophy. Journal of Asynchronous Learning Networks, 2, 15–33.

    Google Scholar 

  21. Hiltz, S. R. (1998). Collaborative learning in asynchronous learning networks: Building learning communities. Invited address at WEB98, Orlando, Florida [Online]. Retrieved September 22, 2008 from http://eies.njit.edu/~hiltz/collaborative_learning_in_asynch.htm, November.

  22. Hinsz, V. B. (1990). Cognitive and consensus processes in group recognition memory performance. Journal of Personality and Social Psychology, 59, 705–718. doi:10.1037/0022-3514.59.4.705.

    Article  Google Scholar 

  23. Hobaugh, C. F. (1997). Interactive strategies for collaborative learning. In Proceedings of the annual conference on distance teaching and learning: Competition–connection–collaboration (pp. 121–125). Madison, WI: University of Wisconsin-Madison.

  24. Hoppe, R. A. (1962). Memorizing by individuals and groups: A test of the pooling-of-ability model. Journal of Abnormal and Social Psychology, 65, 64–67. doi:10.1037/h0041843.

    PubMed  Article  Google Scholar 

  25. Hughes, C., & Hewson, L. (1998). Online interactions: Developing a neglected aspect of the virtual classroom. Educational Technology, 38, 48–55.

    Google Scholar 

  26. Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition: Theory and research. Edina, MN: Interaction Book Company.

    Google Scholar 

  27. Kerr, N. L., & Brunn, S. (1981). Ringelann revisited: Alternate explanations for the social loafing effect. Personality and Social Psychology Bulletin, 7, 224–231. doi:10.1177/014616728172007.

    Article  Google Scholar 

  28. Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision making. Annual Review of Psychology, 56, 623–655. doi:10.1146/annurev.psych.55.090902.142009.

    Article  Google Scholar 

  29. Kerr, N. L., MacCoun, R. J., & Kramer, G. P. (1996). Bias in judgment: Comparing individuals and groups. Psychological Review, 103, 687–719. doi:10.1037/0033-295X.103.4.687.

    Article  Google Scholar 

  30. Kester, L., & Paas, F. (2005). Instructional interventions to enhance collaboration in powerful learning environments. Computers in Human Behavior, 21, 689–696. doi:10.1016/j.chb.2004.11.008.

    Article  Google Scholar 

  31. Kirschner, P. (2002). Can we support CSCL? Educational, social and technological affordances for learning. In P. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL. Inaugural address, Open University of The Netherlands.

  32. Kirschner, P. A., Martens, R. L., & Strijbos, J. W. (2004). CSCL in higher education? A framework for designing multiple collaborative environments. In P. Dillenbourg, J. W. Strijbos, P. A. Kirschner, & R. L. Martens (Eds.), Computer-supported collaborative learning: Vol 3. What we know about CSCL…and implementing it in higher education (pp. 3–30). Boston, MA: Kluwer Academic.

    Google Scholar 

  33. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 46, 75–86. doi:10.1207/s15326985ep4102_1.

    Article  Google Scholar 

  34. Kirschner, P. A., Beers, P. J., Boshuizen, H. P. A., & Gijselaers, W. H. (2008). Coercing shared knowledge in collaborative learning environments. Computers in Human Behavior, 24, 403–420. doi:10.1016/j.chb.2007.01.028.

    Article  Google Scholar 

  35. Kirschner, F., Paas, F., & Kirschner, P. A. (2008). Individual and group-based learning from complex cognitive tasks: Effects on retention and transfer efficiency. Computers in Human Behavior (in press).

  36. Kramer, S. H. (1999). When are two heads better than one? The role of expertise and task difficulty in individuals, statistical group, and interacting group problem solving. (Doctoral dissertation, Harvard Universitie, 1999). Dissertation Abstracts International, 60, 1350.

    Google Scholar 

  37. Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19, 335–353. doi:10.1016/S0747-5632(02)00057-2.

    Article  Google Scholar 

  38. Latané, B., Williams, K., & Harkins, S. (1979). Many hands make light the work: The causes and consequences of social loafing. Journal of Personality and Social Psychology, 37, 822–832. doi:10.1037/0022-3514.37.6.822.

    Article  Google Scholar 

  39. Laughlin, P. R., Bonner, B. L., & Miner, A. G. (2002). Groups perform better than the best individuals on letters-to-numbers problems. Organizational Behavior and Human Decision Processes, 88, 605–602. doi:10.1016/S0749-5978(02)00003-1.

    Article  Google Scholar 

  40. Laughlin, P. T., Zander, M. L., Kievel, E. M., & Tan, T. K. (2003). Groups perform better than the best individuals on letters-to-numbers problems: Informative equations and effective reasoning. Journal of Personality and Social Psychology, 85, 684–694. doi:10.1037/0022-3514.85.4.684.

    PubMed  Article  Google Scholar 

  41. Laughlin, P. R., Hatch, E. C., Silver, J. J., & Boh, L. (2006). Groups perform better than the best individuals on letter-to-numbers problems: Effects of group size. Journal of Personality and Social Psychology, 90, 644–651. doi:10.1037/0022-3514.90.4.644.

    PubMed  Article  Google Scholar 

  42. Levine, J., & Moreland, R. L. (1998). Small groups. In D. T. Gilbers, S. T. Fiske, & G. Lindzey (Eds.), The handbook of social psychology, Vol. 2 (pp. 415–467). New York: McGraw-Hill.

    Google Scholar 

  43. Lorge, I., & Solomon, H. (1955). Two models of group behavior in the solution of eureka-type problems. Psychometrika, 20, 139–148. doi:10.1007/BF02288986.

    Article  Google Scholar 

  44. Lorge, I., & Solomon, H. (1961). Group and individual behaviour in free recall. In J. H. Criswell, H. Solomon, & P. Suppes (Eds.), Mathematical methods in small group processes (pp. 221–231). Stanford, CA: Stanford University Press.

    Google Scholar 

  45. Maertens, M., & Pollmann, S. (2005). FMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning. Journal of Cognitive Neuroscience, 17, 1553–1564. doi:10.1162/089892905774597209.

    PubMed  Article  Google Scholar 

  46. Mäkitalo, K., Weinberger, A., Häkkinen, P., Järvelä, S., & Fischer, F. (2005). Epistemic cooperation scripts in online learning environments: Fostering learning by reducing uncertainty in discourse? Computers in Human Behavior, 21, 603–622. doi:10.1016/j.chb.2004.10.033.

    Article  Google Scholar 

  47. Malone, T. W., & Crowston, K. (1990). What is coordination theory and how can it help design cooperative work systems? In F. Halasz (Ed.), Proceedings of the 1990 ACM conference on computer-supported cooperative work (pp. 375–370). New York: ACM.

    Google Scholar 

  48. Mason, R. (1991). Analyzing computer conferencing interactions. International Journal of Adult Education and Training, 2, 161–173.

    Google Scholar 

  49. Meudell, P. R., Hitch, G. J., & Kirby, P. (1992). Are two heads better than one? Experimental investigations of the social facilitation of memory. Applied Cognitive Psychology, 6, 525–543. doi:10.1002/acp.2350060606.

    Article  Google Scholar 

  50. Morgan, R. L., Whorton, J. E., & Gunsalus, C. (2000). A comparison of short-term and long-term retention: Lecture combined with discussion versus cooperative learning. Journal of Instructional Psychology, 27, 53–58.

    Google Scholar 

  51. Munneke, L., Andriessen, J., Kanselaar, G., & Kirschner, P. A. (2007). Supporting interactive argumentation: Influence of representational tools on discussing a wicked problem. Computers in Human Behavior, 23, 1072–1088. doi:10.1016/j.chb.2006.10.003.

    Article  Google Scholar 

  52. Ohtsubo, Y. (2005). Should information be redundantly distributed among group members? Effective use of group memory in collaborative problem solving. Applied Cognitive Psychology, 19, 1219–1233. doi:10.1002/acp.1162.

    Article  Google Scholar 

  53. Paas, F., & Van Merriënboer, J. J. G. (1993). The efficiency of instructional conditions: An approach to combine mental-effort and performance measures. Human Factors, 35, 737–743.

    Google Scholar 

  54. Paas, F., Renkl, A., & Sweller, J. (2003a). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4. doi:10.1207/S15326985EP3801_1.

    Article  Google Scholar 

  55. Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003b). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71. doi:10.1207/S15326985EP3801_8.

    Article  Google Scholar 

  56. Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1–8. doi:10.1023/B:TRUC.0000021806.17516.d0.

    Article  Google Scholar 

  57. Perlmutter, H. V., & De Montmollin, G. (1952). Group learning of nonsense syllables. Journal of Abnormal and Social Psychology, 47, 762–769. doi:10.1037/h0059790.

    Article  Google Scholar 

  58. Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86. doi:10.1016/S0959-4752(01)00016-0.

    Article  Google Scholar 

  59. Sloffer, S. J., Dueber, B., & Duffy, T. M. (1999). Using asynchronous conferencing to promote critical thinking: Two implementations in higher education (CRLT technical report no. 8–99). Bloomington, IN: Indiana University.

    Google Scholar 

  60. Smith, C. M., Tindale, R. S., & Steiner, L. (1998). Investment decisions by individuals and groups in ‘sunk cost’ situations: The potential impact of shared representations. Group Processes & Intergroup Relations, 1, 175–189. doi:10.1177/1368430298012005.

    Article  Google Scholar 

  61. Stasser, G., & Dietz-Uhler, B. (2001). Collective choice, judgement and problem solving. Vol. 3: Group processes. In M. A. Hogg, & R. S. Tindale (Eds.), Blackwell handbook of social psychology (pp. 31–55). Oxford, UK: Blackwell.

    Google Scholar 

  62. Stasser, G., Kerr, N. L., & Davis, J. H. (1989). Influence processes and consensus models in decision-making groups. In P. Paulus (Ed.), Psychology of group influence (pp. 279–326). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  63. Steiner, I. D. (1972). Group process and productivity. New York: Academic.

    Google Scholar 

  64. Stephenson, G. M., Brandstatter, H., & Wagner, W. (1983). An experimental study of social performance and delay on the testimonial validity of story recall. European Journal of Social Psychology, 13, 175–191. doi:10.1002/ejsp.2420130207.

    Article  Google Scholar 

  65. Sweller, J., Van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–295. doi:10.1023/A:1022193728205.

    Article  Google Scholar 

  66. Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimal guidance during instruction does not work: A reply to commentaries. Educational Psychologist, 47, 115–121.

    Google Scholar 

  67. Taha, L. H., & Caldwell, B. S. (1993). Social isolation and integration in electronic environments. Behaviour & Information Technology, 12, 276–283. doi:10.1080/01449299308924391.

    Article  Google Scholar 

  68. Teasley, S. D., & Roschelle, J. (1993). Constructing a joint problem space: The computer as a tool for sharing knowledge. In S. P. Lajoie, & S. J. Derry (Eds.), Computers as cognitive tools (pp. 229–261). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  69. Tindale, R. S. (1993). Decision errors made by individuals and groups. In N. J. Castellan (Ed.), Individual and group decision making (pp. 109–124). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  70. Van Boxtel, C. A. M., Van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and the elaboration of conceptual knowledge. Learning and Instruction, 10, 311–330. doi:10.1016/S0959-4752(00)00002-5.

    Article  Google Scholar 

  71. Van Bruggen, J., Kirschner, P. A., & Jochems, W. (2002). External representation of argumentation in CSCL and the management of cognitive load. Learning and Instruction, 12, 121–138. doi:10.1016/S0959-4752(01)00019-6.

    Article  Google Scholar 

  72. Van Drie, J., Van Boxtel, C. A. M., Jaspers, J., & Kanselaar, G. (2005). Effects of representational guidance on domain specific reasoning in CSCL. Computers in Human Behavior, 21, 575–602. doi:10.1016/j.chb.2004.10.024.

    Article  Google Scholar 

  73. Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43, 1–11.

    Google Scholar 

  74. Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177. doi:10.1007/s10648-005-3951-0.

    Article  Google Scholar 

  75. Van Merriënboer, J. J. G., Kirschner, P. A., & Kester, L. (2003). Taking the load off the learner’s mind: Instructional design for complex learning. Educational Psychologist, 38, 5–13. doi:10.1207/S15326985EP3801_2.

    Article  Google Scholar 

  76. Vollrath, D. A., Sheppard, B. H., Hinsz, V. B., & Davis, J. H. (1989). Memory performance by decision-making groups and individuals. Organizational Behavior and Human Decision Processes, 43, 289–300. doi:10.1016/0749-5978(89)90040-X.

    Article  Google Scholar 

  77. Weldon, M. S., & Bellinger, K. D. (1997). Collective memory: Collaborative and individual processes in remembering. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23, 1160–1175. doi:10.1037/0278-7393.23.5.1160.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Femke Kirschner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirschner, F., Paas, F. & Kirschner, P.A. A Cognitive Load Approach to Collaborative Learning: United Brains for Complex Tasks. Educ Psychol Rev 21, 31–42 (2009). https://doi.org/10.1007/s10648-008-9095-2

Download citation

Keywords

  • Collaborative learning
  • Cognitive load
  • Task complexity
  • Brain science