Skip to main content

Advertisement

Log in

The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Learning by observing and imitating others has long been recognized as constituting a powerful learning strategy for humans. Recent findings from neuroscience research, more specifically on the mirror neuron system, begin to provide insight into the neural bases of learning by observation and imitation. These findings are discussed here, along with their potential consequences for the design of instruction, focusing in particular on the effectiveness of dynamic vs. static visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The terms observational learning and imitation learning are often used interchangeably, but they may be distinguished in that learning may occur without imitation taking place, that is, we may learn by observing and generating inferences beyond the observation without actually imitating the observed model (Bandura 1986). Because it is broader, we will use the term “observational learning” throughout this article.

  2. It is important to define expertise here. Some authors define “experts” as being individuals who excel in a domain (Ericsson and Lehmann 1996), others as individuals with extensive experience in a domain (Chi et al. 1988), but in educational research, it is also often used to refer to individuals who can perform a particular task really well (e.g., as in the “expertise reversal effect”; Kalyuga et al. 2003). This can have important consequences for the effectiveness of models, because domain experts differ enormously from students in the amount of knowledge they have, in the way this knowledge is organized, and the extent to which experts have automated problem-solving procedures (Chi et al. 1988). Therefore, having domain experts as a model might not help students, because the knowledge gap is too large, whereas task experts might be effective models. The issue can be resolved by consistently using the term “expertise” in a relative rather than absolute sense. In this paper, the term “expertise” should be considered in terms of “levels of expertise” rather than absolute expertise. One instructional technique may facilitate expertise more than another because it increases knowledge more irrespective of the absolute level of expertise, and an expert can be someone with a higher level of expertise than the learner.

References

  • Arguel, A., & Jamet, E. (2008). Using video and static pictures to improve learning of procedural contents. Computers in Human Behavior, in press.

  • Ayres, P., Marcus, N., Chan, C., & Qian, N. (2008). Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, in press.

  • Ayres, P., & Paas, F. (Eds.). (2007a). A cognitive load approach to the learning effectiveness of instructional animation. Applied Cognitive Psychology, 21(6), special issue.

  • Ayres, P., & Paas, F. (2007b). Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology, 21, 695–700. doi:10.1002/acp.1343.

    Article  Google Scholar 

  • Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135–146). New York: Cambridge University Press.

    Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Barouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In N. Osaka, R. H. Logie, & M. D’Esposito (Eds.), The cognitive neuroscience of working memory (pp. 59–80). Oxford: Oxford University Press.

    Google Scholar 

  • Braaksma, M., Rijlaarsdam, G. C. W., Van den Bergh, H., & Van Hout-Wolters, B. A. M. (2004). Observational learning and its effects on the orchestration of the writing process. Cognition and Instruction, 22, 1–36. doi:10.1207/s1532690Xci2201_1.

    Article  Google Scholar 

  • Buccino, G., Vogt, S., Ritzl, A., Fink, G., Zilles, K., Freund, H., et al. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323–334. doi:10.1016/S0896-6273(04)00181-3.

    Article  PubMed  Google Scholar 

  • Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.

    Article  Google Scholar 

  • Chi, M. T. H., Glaser, R., & Farr, M. (Eds.).(1988). The nature of expertise. Hillsdale, NJ: Erlbaum.

  • Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347–362. doi:10.1037/0022-0663.79.4.347.

    Article  Google Scholar 

  • Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology. Applied, 7, 68–82. doi:10.1037/1076-898X.7.1.68.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24, 87–114. doi:10.1017/S0140525X01003922.

    Article  PubMed  Google Scholar 

  • Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492–502. doi:10.1016/S0028-3932(01)00134-8.

    Article  PubMed  Google Scholar 

  • De Jong, T., Van Gog, T., Jenks, K., Manlove, S., Van Hell, J., Jolles, J., et al. (2008). Explorations in learning and the brain: On the potential of cognitive neuroscience for education. in press. Berlin: Springer. Also available (downloaded July 28, 2008) from http://www.nwo.nl/files.nsf/pages/NWOA_7GFD3Y/$file/Explorations_in_Learning_and_the_Brain.pdf.

  • Detterman, D. K., & Sternberg, R. J. (Eds.).(1993). Transfer on trial: Intelligence, cognition, and instruction. Norwood, NJ: Ablex.

  • Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180. doi:10.1007/BF00230027.

    Article  Google Scholar 

  • Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence for maximal adaptation to task constraints. Annual Review of Psychology, 47, 273–305. doi:10.1146/annurev.psych.47.1.273.

    Article  PubMed  Google Scholar 

  • Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 2608–2611.

    PubMed  Google Scholar 

  • Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, in press.

  • Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 1674–1684. doi:10.1016/j.neuroimage.2007.02.003.

    Article  PubMed  Google Scholar 

  • Geary, D. (2007). Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. In J. S. Carlson, & J. R. Levin (Eds.), Psychological perspectives on contemporary educational issues (pp. 1–99). Greenwich, CT: Information Age.

    Google Scholar 

  • Gergely, G., Bekkering, H., & Király, I. (2002). Rational imitation in preverbal infants: Babies may opt for a simpler way to turn on a light after watching an adult do it. Nature, 415, 755.

    PubMed  Google Scholar 

  • Goswami, U. (2004). Neuroscience and education. The British Journal of Educational Psychology, 74, 1–14. doi:10.1348/000709904322848798.

    Article  PubMed  Google Scholar 

  • Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12, 1–19. doi:10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V.

    Article  PubMed  Google Scholar 

  • Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21, 325–360. doi:10.1207/s1532690xci2104_1.

    Article  Google Scholar 

  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738. doi:10.1016/j.learninstruc.2007.09.013.

    Article  Google Scholar 

  • Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31, 1–58. doi:10.1017/S0140525X07003123.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., Woods, R., Brass, M., Bekkering, H., Mazziotta, J., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528. doi:10.1126/science.286.5449.2526.

    Article  PubMed  Google Scholar 

  • Jeon, U. H., & Branson, R. K. (1981). Performance and simulated performance test results as a function of instruction by still and motion visuals. Journal of Educational Technology Systems, 10, 33–44.

    Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–32. doi:10.1207/S15326985EP3801_4.

    Article  Google Scholar 

  • Katzir, T., & Paré-Blagoev, J. (2006). Applying cognitive neuroscience research to education: The case of literacy. Educational Psychologist, 41, 53–74. doi:10.1207/s15326985ep4101_6.

    Article  Google Scholar 

  • Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: From self to social cognition. Trends in Cognitive Sciences, 11, 194–196. doi:10.1016/j.tics.2007.02.002.

    Article  PubMed  Google Scholar 

  • Kitsantas, A., Zimmerman, B. J., & Cleary, T. (2000). The role of observation and emulation in the development of athletic self-regulation. Journal of Educational Psychology, 92, 811–817. doi:10.1037/0022-0663.92.4.811.

    Article  Google Scholar 

  • Leahy, W., & Sweller, J. (2005). Interactions among the imagination, expertise reversal and element interactivity effects. Journal of Experimental Psychology. Applied, 11, 266–276. doi:10.1037/1076-898X.11.4.266.

    Article  PubMed  Google Scholar 

  • Leahy, W., & Sweller, J. (2008). The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 22, 273–283. doi:10.1002/acp.1373.

    Article  Google Scholar 

  • Lowe, R. K., & Schnotz, W. (Eds.). (2008). Learning with animation: Research implications for design. New York: Cambridge University Press.

  • Mayer, R. E. (Ed.).(2005). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity to process information. Psychological Review, 63, 81–97. doi:10.1037/h0043158.

    Article  PubMed  Google Scholar 

  • OECD. (2007). Understanding the brain: The birth of a learning science. Paris: Office of Economic Cooperation and Development.

    Google Scholar 

  • Osaka, N., Logie, R. H., & D’Esposito, M. (Eds.).(2007). The cognitive neuroscience of working memory. Oxford: Oxford University Press.

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434. doi:10.1037/0022-0663.84.4.429.

    Article  Google Scholar 

  • Paas, F., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive load approach. Journal of Educational Psychology, 86, 122–133. doi:10.1037/0022-0663.86.1.122.

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4. doi:10.1207/S15326985EP3801_1.

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1–8. doi:10.1023/B:TRUC.0000021806.17516.d0.

    Article  Google Scholar 

  • Park, O., & Hopkins, R. (1993). Instructional conditions for using dynamic visual displays: A review. Instructional Science, 21, 427–449. doi:10.1007/BF00118557.

    Article  Google Scholar 

  • Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29.

    Article  Google Scholar 

  • Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210, 419–421. doi:10.1007/s00429-005-0039-z.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi:10.1146/annurev.neuro.27.070203.144230.

    Article  PubMed  Google Scholar 

  • Schnotz, W., & Lowe, R. K. (Eds.). (2003). External and internal representations in multimedia learning. Learning and Instruction, 13(2), special issue.

  • Stern, E., Grabner, R., & Schumacher, R. (2006). Educational research and neurosciences - Expectations, evidence, research prospects. Berlin: Federal Ministry of Education and Research.

    Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem-solving: Effects on learning. Cognitive Science, 12, 257–285.

    Article  Google Scholar 

  • Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9–31. doi:10.1023/B:TRUC.0000021808.72598.4d.

    Article  Google Scholar 

  • Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2, 59–89. doi:10.1207/s1532690xci0201_3.

    Article  Google Scholar 

  • Sweller, J., & Sweller, S. (2006). Natural information processing systems. Ecological Psychology, 4, 434–458.

    Google Scholar 

  • Sweller, J., Van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–295. doi:10.1023/A:1022193728205.

    Article  Google Scholar 

  • Tai, Y., Scherfler, C., Brooks, D., Sawamoto, N., & Castiello, U. (2004). The human premotor cortex is “mirror” only for biological actions. Current Biology, 14, 117–120. doi:10.1016/j.cub.2004.01.005.

    Article  PubMed  Google Scholar 

  • Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., et al. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17, 273–281. doi:10.1162/0898929053124965.

    Article  PubMed  Google Scholar 

  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human–Computer Studies, 57, 247–262. doi:10.1006/ijhc.2002.1017.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2004). Process-oriented worked examples: Improving transfer performance through enhanced understanding. Instructional Science, 32, 83–98. doi:10.1023/B:TRUC.0000021810.70784.b0.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 154–164. doi:10.1016/j.learninstruc.2006.02.003.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2008). Effects of studying sequences of process-oriented and product-oriented worked examples on troubleshooting transfer efficiency. Learning and Instruction, 18, 211–222. doi:10.1016/j.learninstruc.2007.03.003.

    Article  Google Scholar 

  • Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177. doi:10.1007/s10648-005-3951-0.

    Article  Google Scholar 

  • Vogt, S., Taylor, P., & Hopkins, B. (2003). Visuomotor priming by pictures of hand postures: perspective matters. Neuropsychologia, 41, 941–951. doi:10.1016/S0028-3932(02)00319-6.

    Article  PubMed  Google Scholar 

  • Wetzel, C. D., Radtke, P. H., & Stern, H. W. (1994). Instructional effectiveness of video media. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wong, A., Marcus, N., Ayres, P., Smith, L., Cooper, G.A., Paas, F., et al. (2008). Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior, in press.

  • Wouters, P., Paas, F., & Van Merriënboer, J. J. G. (2008). How to optimize learning from animated models? A review of guidelines based on cognitive load. Review of Educational Research, 78, 645–675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara van Gog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gog, T., Paas, F., Marcus, N. et al. The Mirror Neuron System and Observational Learning: Implications for the Effectiveness of Dynamic Visualizations. Educ Psychol Rev 21, 21–30 (2009). https://doi.org/10.1007/s10648-008-9094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-008-9094-3

Keywords

Navigation