Skip to main content

From Research to Practice and Back: The Animation Tutor Project

Abstract

The Animation TutorTM is a curriculum project that uses software to supplement instruction in courses such as intermediate algebra. Its purpose is to ground mathematical reasoning in concrete experiences through the use of interactive animation and the virtual manipulation of objects. This article summarizes how the project has progressed from research to practice and back. The first section shows how research helped implement six instructional objectives: emphasize interactivity with reflection, integrate multiple representations, reduce cognitive load, facilitate transfer, replace ineffective static images with animated images, and provide domain-specific knowledge. The last section illustrates the reciprocal nature of research and practice by describing how formative evaluations of the Animation TutorTM program led to laboratory studies aimed at improving instructional materials and student strategies.

This is a preview of subscription content, access via your institution.

References

  • Ackerman, P. L., and Cianciolo, A. T. (2000). Cognitive, perceptual-speed, and psychomotor determinants of individual differences during skill acquisition. J. Exp. Psychol.: Appl. 6: 259–290.

    Google Scholar 

  • Ainsworth, S. (1999). The functions of multiple representations. Comp. Educ. 33: 131–152.

    Google Scholar 

  • Barnett, S. M., and Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy of far transfer. Psychol. Bull. 128: 612–637.

    PubMed  Google Scholar 

  • Brown, N. R., and Siegler, R. S. (1993). Metrics and mappings: A framework for understanding real-world quantitative estimation. Psychol. Rev. 100: 511–534.

    PubMed  Google Scholar 

  • Chen, Z. (1995). Analogical transfer: From schematic pictures to problem solving. Memory Cogn. 23: 255–269.

    Google Scholar 

  • Cobb, P. (1999). Individual and collective mathematical development: The case of statistical data analysis. Math. Think. Learn. 1: 5–43.

    Google Scholar 

  • Collins, A. (1999). The changing infrastructure of education research. In Lagemann, L., and Shulman, L. (eds.), Issues in education research, Josey-Bass, San Francisco.

    Google Scholar 

  • De Bock, D., Verschaffel, L., and Janssens, D. (2002). The effects of different problem presentations and formulations on the illusion of linearity in secondary school students. Math. Think. Learn. 4: 65–89.

    Google Scholar 

  • Dede, C. (2004). If design-based research is the answer, what is the question? J. Learn. Sci. 13: 105–114.

    Google Scholar 

  • diSessa, A. A., and Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. J. Learn. Sci. 13: 77–103.

    Google Scholar 

  • Edelson, D. C. (2002). Design research: What we learn when we engage in design. J. Learn. Sci. 11: 105–121.

    Google Scholar 

  • Gick, M., and Holyoak, K. J. (1983). Schema induction and analogical transfer. Cogn. Psychol. 15: 1–38.

    Google Scholar 

  • Goldenberg, E. P. (1988). Mathematics, metaphors, and human factors: Mathematical, technical, and pedagogical challenges in the educational use of graphical representation of functions. J. Math. Behav. 7: 135–173.

    Google Scholar 

  • Goldstone, R. L., and Sakamota, Y. (2002). The transfer of abstract principles governing complex adaptive systems. Cogn. Psychol. 46: 414–466.

    Google Scholar 

  • Greer, B. (1993). The mathematical modeling perspective on wor(l)d problems. J. Math. Behav. 12: 239–250.

    Google Scholar 

  • Greer, B., Hoffman, B., and Reed, S. K. (2002). Animation Tutor: Dimensional thinking. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Greeno, J. G., Smith, D. R., and Moore, J. L. (1993). Transfer of situated learning. In Detterman, D. K., and Sternberg, R. J. (eds.), Transfer on Trial: Intelligence, Cognition, and Instruction, Ablex, Norwood, NJ, pp. 99–167.

    Google Scholar 

  • Hoffman, B., and Reed, S. K. (2001). Animation Tutor: Personal finance. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Hogan, T. P., and Brezinski, K. L. (2003). Quantitative estimation: One, two, or three abilities? Math. Think. Learn. 5: 259–280.

    Google Scholar 

  • Jonassen, D. H. (2003). Designing reseach-based instruction for story problems. Educ. Psychol. Rev. 15: 267–296.

    Google Scholar 

  • Koedinger, K. R., and Tabachneck, H. J. (1994). Two strategies are better than one: Multiple strategy use in word problem solving. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.

  • Larkin, J. H., and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11: 65–99.

    Google Scholar 

  • Mayer, R. E. (2001). Multimedia Learning, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • NCTM. (2000). Principles and standards for school mathematics, National Council of the Teacher of Mathematics, Reston, VA.

    Google Scholar 

  • Pedone, R., Hummel, J. E., and Holyoak, K. J. (2001). The use of diagrams in analogical problem solving. Memory Cogn. 19: 214–221.

    Google Scholar 

  • Project 2061. (2000). Algebra for all—Not with today’s textbooks, says AAAS (Retrieved April 16, 2002, from http://www.project2061.org/newsinfo/press/rl000426.htm): American Association for the Advancement of Science.

  • Reed, S. K. (1984). Estimating answers to algebra word problems. J. Exper. Psychol. Learn. Memory Cogn. 10: 778–790.

    Google Scholar 

  • Reed, S. K. (1985). Effect of computer graphics on improving estimates to algebra word problems. J. Educ. Psychol. 77: 285–298.

    Google Scholar 

  • Reed, S. K. (1987). A structure-mapping model for word problems. J. Exp. Psychol. Learn. Memory Cogn. 13: 124–139.

    Google Scholar 

  • Reed, S. K. (1993). A schema-based theory of transfer. In Detterman, D. K., and Sternberg, R. J. (eds.), Transfer on trial: Intelligence, Cognition, and Instruction, Ablex, Norwood, NJ, pp. 39–67.

    Google Scholar 

  • Reed, S. K. (1999). Word Problems: Research and Curriculum Reform, Erlbaum, Mahwah, NJ.

    Google Scholar 

  • Reed, S. K., Cooke, J., and Jazo, L. (2002). Building complex solutions from simple solutions in the Animation Tutor: Task Completion. Math. Think. Learn. 4: 315–336.

    Google Scholar 

  • Reed, S. K., and Evans, A. C. (1987). Learning functional relations: A theoretical and instructional analysis. J. Exp. Psychol. Gen. 116: 106–118.

    Google Scholar 

  • Reed, S. K., and Hoffman, B. (2004). Use of temporal and spatial information in estimating event completion time. Memory Cogn. 32: 271–282.

    Google Scholar 

  • Reed, S. K., and Jazo, L. (2002). Using multiple representations to improve conceptions of average speed. J. Educ. Comput. Res. 27: 147–166.

    Google Scholar 

  • Reed, S. K., Hoffman, B., and Phares, S. (2001). Animation Tutor: Catch up. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Reed, S. K., Hoffman, B., and Short, D. (2002). Animation Tutor: Population growth. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Reed, S. K., and Phares, S. (2003). Animation Tutor: Task completion. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Reed, S. K., Phares, S., and Sale, J. (2003). Animation Tutor: Leaky tanks. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Reed, S. K., and Saavedra, N. C. (1986). A comparison of computation, discovery, and graph procedures for improving students’ conception of average speed. Cogn. Instruct. 3: 31–62.

    Google Scholar 

  • Reed, S. K., Sale, J., and Phares, S. (2000). Animation Tutor: Average speed. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Rieber, L. P. (1990). Animation in computer-based instruction. Educ. Technol. Res. Dev. 38: 77–86.

    Google Scholar 

  • Roth, W.-M., and Bowen, G. M. (2001). Professionals read graphs: A semiotic analysis. J. Res. Math. Educ. 32: 159–194.

    Google Scholar 

  • Stump, S. L. (2001). High school precalculus students’ understanding of slope as measure. School Sci. Math. 10: 81–89.

    Article  Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learn. Instruct. 4: 295–312.

    Google Scholar 

  • Taconis, R., Ferguson-Hessler, M. G. M., and Broekkamp, H. (2001). Teaching science problem solving: An overview of experimental work. J. Res. Sci. Teach. 38: 442–468.

    Google Scholar 

  • Tyner, K., Reed, S. K., and Phares, S. (2000). Animation Tutor: Chemical kinetics. [Computer software]. San Diego State University, San Diego, CA.

    Google Scholar 

  • Tversky, B., Morrison, J. B., and Betrancourt, M. (2002). Animation: Can it facilitate? Int. J. Hum.-Comp. Stud. 57: 1–16.

    Google Scholar 

  • Verschaffel, L., Greer, B., and de Corte, E. (Eds.). (2000). Making Sense of Word Problems, Swets & Zeitlinger, Heereweg, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. Reed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reed, S.K. From Research to Practice and Back: The Animation Tutor Project. Educ Psychol Rev 17, 55–82 (2005). https://doi.org/10.1007/s10648-005-1636-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-005-1636-3

Keywords

  • action
  • animation
  • mathematical reasoning
  • technology
  • tutor