Skip to main content
Log in

Combined use of biomarkers to assess the impact of untreated wastewater from the Danube River, Serbia

  • Research
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In this study a battery of bioassays, both in vivo (metals and metalloids concentrations, erythrocyte morphometry, comet assay, micronucleus assay, and histopathological analyses) on vimba bream Vimba vimba (L., 1758) and white bream Blicca bjoerkna (L., 1758), and in vitro (treatment of HepG2 cells with native water samples) was applied to assess the harmful potential of untreated wastewater. Faecal indicator bacteria were quantified to assess the microbiological water quality. Vimba bream had significantly higher Fe concentrations in both liver and muscle, while white bream had higher Ca and Cu concentrations in liver. Vimba bream had a significantly higher level of DNA damage in both liver and blood cells, in comparison to white bream. Low levels of micronucleus and nuclear abnormalities were observed in both species. Erythrocytes morphometry did not show significant interspecific differences. Histopathological analyses revealed a similar response of the studied species, with a significantly higher presence of ceroid pigments in the liver of vimba bream. Treatment of HepG2 cells revealed the high genotoxic potential of water downstream of the discharge point. The results of this study clearly demonstrate the importance of effect-based monitoring, in order to enforce more efficient management of natural resources and implementation of wastewater treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aborgiba M, Kostić J, Kolarević S, Kračun-Kolarević M, Elbahi S, Knežević-Vukčević J, Lenhardt M, Paunović M, Gačić Z, Vuković-Gačić B (2016) Flooding modifies the genotoxic effects of pollution on a worm, a mussel and two fish species from the Sava River. Sci Total Environ 540:358–367. https://doi.org/10.1016/j.scitotenv.2015.03.120

    Article  CAS  Google Scholar 

  • Amaya MJ, Nathanson MH (2013) Calcium signaling in the liver. Compr Physiol 3(1):515. https://doi.org/10.1002/cphy.c120013

    Article  Google Scholar 

  • Baderna D, Colombo A, Amodei G, Cantù S, Teoldi F, Cambria F, Rotella G, Natolino F, Lodi M, Benfenati E (2013) Chemical-based risk assessment and in vitro models of human health effects induced by organic pollutants in soils from the Olona valley. Sci Total Environ 463:790–801. https://doi.org/10.1016/j.scitotenv.2013.06.088

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt‐Holm P, Wahli T (1999) Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J Fish Dis 22(1):25–34. https://doi.org/10.1046/j.1365-2761.1999.00134.x

    Article  Google Scholar 

  • Bernet D, Schmidt-Posthaus H, Wahli T, Burkhardt-Holm P (2004) Evaluation of two monitoring approaches to assess effects of waste water disposal on histological alterations in fish. Hydrobiologia 524(1):53–66. https://doi.org/10.1023/B:HYDR.0000036196.84682.27

    Article  Google Scholar 

  • Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26(1):205–213. https://doi.org/10.1093/mutage/geq073

    Article  CAS  Google Scholar 

  • Camargo MM, Martinez CB (2007) Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop Ichthyol 5(3):327–336. https://doi.org/10.1590/S1679-62252007000300013

    Article  Google Scholar 

  • Carrasco KR, Tilbury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47(11):2123–2136. https://doi.org/10.1139/f90-237

    Article  CAS  Google Scholar 

  • Carvalho ML, Santiago S, Nunes ML (2005) Assessment of the essential element and heavy metal content of edible fish muscle. Anal Bioanal Chem 382(2):426–432. https://doi.org/10.1007/s00216-004-3005-3

    Article  CAS  Google Scholar 

  • Çoğun HY, Yüzereroğlu TA, Firat Ö, Gök G, Kargin F (2006) Metal concentrations in fish species from the northeast Mediterranean Sea. Environ Monit Assess 121(1):431–438. https://doi.org/10.1007/s10661-005-9142-0

    Article  CAS  Google Scholar 

  • da Silva Montes C, Ferreira MAP, Giarrizzo T, Amado LL, Rocha RM (2022) The legacy of artisanal gold mining and its impact on fish health from Tapajós Amazonian region: A multi-biomarker approach. Chemosphere 287:132263. https://doi.org/10.1016/j.chemosphere.2021.132263

    Article  CAS  Google Scholar 

  • Dane H, Şişman T (2015) Histopathological changes in gill and liver of Capoeta capoeta living in the Karasu River, Erzurum. Environ Toxicol 30(8):904–917. https://doi.org/10.1002/tox.21965

    Article  CAS  Google Scholar 

  • Dang M, Nørregaard R, Bach L, Sonne C, Søndergaard J, Gustavson K, Aastrup P, Nowak B (2017) Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland. Environ Res 153:171–180. https://doi.org/10.1016/j.envres.2016.12.007

    Article  CAS  Google Scholar 

  • Das C, Rout MK, Wildering WC, Vijayan MM (2021) Cortisol modulates calcium release-activated calcium channel gating in fish hepatocytes. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-88957-3

    Article  CAS  Google Scholar 

  • De Andrade VM, Da Silva J, Da Silva FR, Heuser VD, Dias JF, Yoneama ML, De Freitas TR (2004) Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test. Environ Mol Mutagen 44(5):459–468. https://doi.org/10.1002/em.20070

    Article  CAS  Google Scholar 

  • Dus L, Svobodová Z, Janous D, Vykusová B, Jarkovský J, Šmíd R, Pavlis P (2005) Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): multispecies monitoring study 1991–1996. Ecotoxicol Environ Saf 61(2):256–267. https://doi.org/10.1016/j.ecoenv.2004.11.007

    Article  CAS  Google Scholar 

  • Edberg SCL, Rice EW, Karlin RJ, Allen MJ (2000) Escherichia coli: the best biological drinking water indicator for public health protection. J Appl Microbiol 88(S1):106S–116S. https://doi.org/10.1111/j.1365-2672.2000.tb05338.x

    Article  Google Scholar 

  • European Commission Regulation (2006) Setting maximum levels for certain contaminants in foodstuffs, Official Journal of the European Union No, 1881/2006

  • Fallah AA, Saei-Dehkordi SS, Nematollahi A, Jafari T (2011) Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem J 98(2):275–279. https://doi.org/10.1016/j.microc.2011.02.007

    Article  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res - Genet Toxicol Environ Mutagen 534(1–2):65–75. https://doi.org/10.1016/S1383-5718(02)00249-8

    Article  CAS  Google Scholar 

  • Fonseca AR, Fernandes LS, Fontainhas-Fernandes A, Monteiro SM, Pacheco FAL (2016) From catchment to fish: Impact of anthropogenic pressures on gill histopathology. Sci Total Environ 550:972–986. https://doi.org/10.1016/j.scitotenv.2016.01.199

    Article  CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res - Rev Mutat Res 681(1):80–92. https://doi.org/10.1016/j.mrrev.2008.03.001

    Article  CAS  Google Scholar 

  • Grisolia CK, Rivero CL, Starling FL, da Silva IC, Barbosa AC, Dorea JG (2009) Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. Genet Mol Biol 32(1):138–143. https://doi.org/10.1590/S1415-47572009005000009

    Article  CAS  Google Scholar 

  • Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X (2019) The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. Mutat Res - Rev Mutat Res 779:1–35. https://doi.org/10.1016/j.mrrev.2018.11.001

    Article  CAS  Google Scholar 

  • Houston AH (1997) Are the classical hematological variables acceptable indicators of fish health? Trans Am Fish Soc 126(6):879–894. https://doi.org/10.1577/1548-8659(1997)126<0879:RATCHV>2.3.CO;2

  • Houston AH, Murad A (1991) Hematological characterization of goldfish, Carassius auratus L., by image analysis: effects of thermal acclimation and heat shock. Can J Zool 69(8):2041–2047. https://doi.org/10.1139/z91-28

    Article  Google Scholar 

  • Jia Y, Wang L, Qu Z, Wang C, Yang Z (2017) Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environ Sci Pollut Res 24(10):9379–9386. https://doi.org/10.1007/s11356-017-8606-4

    Article  CAS  Google Scholar 

  • JKP “Vodovod i kanalizacija” Indjija i Stara Pazova (2018) Акциони план за достизање граничних вредности емисије загађујућих материја у воде за Јавна комунална предузећа „Водовод и канализација“ Инђија и Стара Пазова

  • Jovanović J, Kolarević S, Milošković A, Radojković N, Simić V, Dojčinović B, Kračun-Kolarević M, Paunović M, Kostić J, Sunjog K, Timilijić J, Djordjević J, Gačić Z, Žegura B, Vuković-Gačić B (2018) Evaluation of genotoxic potential in the Velika Morava River Basin in vitro and in situ. Sci Total Environ 621:1289–1299. https://doi.org/10.1016/j.scitotenv.2017.10.099

    Article  CAS  Google Scholar 

  • Jovičić K, Lenhardt M, Višnjić-Jeftić Ž, Ðikanović V, Skorić S, Smederevac-Lalić M, Jaćimović M, Gačić Z, Jarić I, Hegediš A (2014) Assessment of fish stocks and elemental pollution in the Danube, Sava and Kolubara rivers on the territory of the city of Belgrade, Serbia Acta Zool Bulg 2014 (Suppl. 7):179–184

    Google Scholar 

  • Jovičić K, Nikolić DM, Višnjić-Jeftić Ž, Đikanović V, Skorić S, Stefanović SM, Lenhardt M, Hegediš A, Krpo-Ćetković J, Jarić I (2015) Mapping differential elemental accumulation in fish tissues: assessment of metal and trace element concentrations in wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res 22(5):3820–3827. https://doi.org/10.1007/s11356-014-3636-7

    Article  CAS  Google Scholar 

  • Kavka GG, Kasimir GD, Farnleitner AH (2006) Microbiological water quality of the River Danube (km 2581-km 15): Longitudinal variation of pollution as determined by standard parameters. In “Proceedings 36th International Conference of IAD. Austrian Committee Danube Research/IAD, Vienna,” 978-3-9500723-2-7, pp. 415–421.

  • Kirschner AK, Kavka GG, Velimirov B, Mach RL, Sommer R, Farnleitner AH (2009) Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water Res 43(15):3673–3684. https://doi.org/10.1016/j.watres.2009.05.034

    Article  CAS  Google Scholar 

  • Kirschner AKT, Reischer GH, Jakwerth S, Savio D, Ixenmaier S, Toth E, Sommer R, Mach RL, Linke R, Eiler A, Kolarević S, Farnleitner AH (2017) Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Res 124:543–555. https://doi.org/10.1016/j.watres.2017.07.052

    Article  CAS  Google Scholar 

  • Kolarević S, Aborgiba M, Kračun-Kolarević M, Kostić J, Simonović P, Simić V, Milošković A, Reischer G, Farnleitner A, Gačić Z, Milačič R, Zuliani T, Vidmar J, Pergal M, Piria M, Paunović M, Vuković-Gačić B (2016) Evaluation of genotoxic pressure along the Sava River. PLoS One 11(9):e0162450. https://doi.org/10.1371/journal.pone.0162450

    Article  CAS  Google Scholar 

  • König M, Escher BI, Neale PA, Krauss M, Hilscherová K, Novák J, Teodorović I, Schulze T, Seidensticker S, Hashmi MAK, Ahlheim J, Brack W (2017) Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environ Pollut 220:1220–1230. https://doi.org/10.1016/j.envpol.2016.11.011

    Article  CAS  Google Scholar 

  • Koopaei N, Abdollahi M (2017) Health risks associated with the pharmaceuticals in wastewater. DARU J Pharm Sci 25(1):1–7. https://doi.org/10.1186/s40199-017-0176-y

    Article  CAS  Google Scholar 

  • Kostić J, Kolarević S, Kračun-Kolarević M, Aborgiba M, Gačić Z, Lenhardt M, Vuković-Gačić B (2016) Genotoxicity assessment of the Danube River using tissues of freshwater bream (Abramis brama). Environ Sci Pollut Res 23(20):20783–20795. https://doi.org/10.1007/s11356-016-7213-0

    Article  CAS  Google Scholar 

  • Kostić J, Kolarević S, Kračun-Kolarević M, Aborgiba M, Gačić Z, Paunović M, Višnjić-Jeftić Ž, Rašković B, Poleksić V, Lenhardt M, Vuković-Gačić B (2017) The impact of multiple stressors on the biomarkers response in gills and liver of freshwater breams during different seasons. Sci Total Environ 601:1670–1681. https://doi.org/10.1016/j.scitotenv.2017.05.273

    Article  CAS  Google Scholar 

  • Kostić-Vuković J, Kolarević S, Kračun-Kolarević M, Višnjić-Jeftić Ž, Rašković B, Poleksić V, Gačić Z, Lenhardt M, Vuković-Gačić B (2021) Temporal variation of biomarkers in common bream Abramis brama (L., 1758) exposed to untreated municipal wastewater in the Danube River in Belgrade, Serbia. Environ Monit Assess 193(8):1–18. https://doi.org/10.1007/s10661-021-09232-6

    Article  CAS  Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat, Cornol and Freyhof, Berlin, Germany, pp. 180, 291–292.

  • Kousar S, Javed M (2015) Diagnosis of metals induced DNA damage in fish using comet assay. Pak Vet J 35(2):168–172

    CAS  Google Scholar 

  • Lahnsteiner F (2021) Erythrocyte morphometry in teleost fish—Species‐specific, inter‐individual and environmental‐related differences. Acta Zool 102(3):237–249. https://doi.org/10.1111/azo.12330

    Article  Google Scholar 

  • Lenhardt M, Jarić I, Kolarević S, Vuković-Gačić B, Knežević-Vukčević J, Smederevac-Lalić M, Cvijanović G, Gačić Z (2016) Impact of human activities on the status of the Danube River in Serbia: Microbiological and ichthyofaunistic studies. Acta Oecologica Carpatica 9:151–176

    Google Scholar 

  • Liber K, Goodfellow W, Den Besten P, Clements W, Galloway T, Gerhardt A, Green A, Simpson S (2007) In situ‐based effects measures: Considerations for improving methods and approaches. Integr Environ Assess Manage 3(2):246–258. https://doi.org/10.1897/2006-029FIN.1

    Article  Google Scholar 

  • Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42(4):630–648

    Article  CAS  Google Scholar 

  • Manzano BC, Roberto MM, Hoshina MM, Menegário AA, Marin-Morales MA (2015) Evaluation of the genotoxicity of waters impacted by domestic and industrial effluents of a highly industrialized region of São Paulo State, Brazil, by the comet assay in HTC cells. Environ Sci Pollut Res 22(2):1399–1407. https://doi.org/10.1007/s11356-014-3476-5

    Article  CAS  Google Scholar 

  • Marić JJ, Kračun-Kolarević M, Kolarević S, Sunjog K, Kostić-Vuković J, Deutschmann B, Hollert H, Tenji D, Vuković-Gačić B (2020) Selection of assay, organism, and approach in biomonitoring significantly affects the evaluation of genotoxic potential in aquatic environments. Environ Sci Pollut Res 27(27):33903–33915. https://doi.org/10.1007/s11356-020-09597-0

    Article  CAS  Google Scholar 

  • Martins MG, Martins DEG, Pena RDS (2017) Chemical composition of different muscle zones in pirarucu (Arapaima gigas). Food Sci Technol 37:651–656. https://doi.org/10.1590/1678-457X.30116

    Article  Google Scholar 

  • Mersch-Sundermann V, Knasmüller S, Wu XJ, Darroudi F, Kassie F (2004) Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 198(1–3):329–340. https://doi.org/10.1016/j.tox.2004.02.009

    Article  CAS  Google Scholar 

  • Miege C, Peretti A, Labadie P, Budzinski H, Le Bizec B, Vorkamp K, Tronczyński J, Persat H, Coquery M, Babut M(2012) Occurrence of priority and emerging organic compounds in fishes from the Rhone River (France) Anal Bioanal Chem 404(0):2721–2735. https://doi.org/10.1007/s00216-012-6187-0

    Article  CAS  Google Scholar 

  • Nero V, Farwell A, Lister A, Van Der Kraak G, Lee LEJ, Van Meer T, MacKinnon MD, Dixon DG (2006) Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water. Ecotoxicol Environ Saf 63(3):365–377. https://doi.org/10.1016/j.ecoenv.2005.04.014

    Article  CAS  Google Scholar 

  • Nikolić D, Skorić S, Poleksić V, Rašković B (2021) Sex-specific elemental accumulation and histopathology of pikeperch (Sander lucioperca) from Garaši reservoir (Serbia) with human health risk assessment. Environ Sci Pollut Res 28(38):53700–53711. https://doi.org/10.1007/s11356-021-14526-w

    Article  CAS  Google Scholar 

  • Nørregaard RD, Bach L, Geertz-Hansen O, Nabe-Nielsen J, Nowak B, Jantawongsri K, Dang M, Søndergaard J, Leifsson PS, Jenssen BM, Ciesielski TM, Arukwe A, Sonne C (2022) Element concentrations, histology and serum biochemistry of arctic char (Salvelinus alpinus) and shorthorn sculpins (Myoxocephalus scorpius) in northwest Greenland. Environ Res 112742. https://doi.org/10.1016/j.envres.2022.112742

  • Official Gazzette of RS (2011) Regulation on quantity of pesticides, metals, metalloids, and other toxic substances, chemotherapeutics, anabolics, and other substances which can be found in food. Official Gazzette of RS No 28/2011

  • Owili MA (2003) Assesment of impact of sewage effluents on coastal water quality in Hafnarfjordur, Iceland. The United Nations Fishery Training Program, Final Report

  • Pérez MR, Rossi AS, Bacchetta C, Elorriaga Y, Carriquiriborde P, Cazenave J (2018) In situ evaluation of the toxicological impact of a wastewater effluent on the fish Prochilodus lineatus: biochemical and histological assessment. Ecol Indic 84:345–353. https://doi.org/10.1016/j.ecolind.2017.09.004

    Article  CAS  Google Scholar 

  • Poleksić V, Mitrović-Tutundžić V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. Sublethal and chronic effects of pollutants on freshwater fish. Oxford: Fishing News Books, pp. 339–352.

  • Pyle GG, Rajotte JW, Couture P (2005) Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotoxicol Environ Saf 61(3):287–312. https://doi.org/10.1016/j.ecoenv.2004.09.003

    Article  CAS  Google Scholar 

  • Qadir A, Malik RN (2011) Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol Trace Elem Res 143(3):1524–1540. https://doi.org/10.1007/s12011-011-9011-3

    Article  CAS  Google Scholar 

  • Rajkowska M, Protasowicki M (2013) Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland. Environ Monit Assess 185(4):3493–3502. https://doi.org/10.1007/s10661-012-2805-8

    Article  CAS  Google Scholar 

  • Rašković B, Poleksić V, Višnjić‐Jeftić Ž, Skorić S, Gačić Z, Djikanović V, Jarić I, Lenhardt M (2015) Use of histopathology and elemental accumulation in different organs of two benthophagous fish species as indicators of river pollution. Environ Toxicol 30(10):1153–1161. https://doi.org/10.1002/tox.21988

    Article  CAS  Google Scholar 

  • Rechenburg A, Koch C, Claßen T, Kistemann T (2006) Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water. Water Sci Technol 54(3):95–99. https://doi.org/10.2166/wst.2006.454

    Article  CAS  Google Scholar 

  • Roberts RJ, Johnson KA, Casten MT (2004) Control of Salmincola californiensis (Copepoda: Lernaeapodidae) in rainbow trout, Oncorhynchus mykiss (Walbaum): A clinical and histopathological study. J Fish Dis 27(2):73–79. https://doi.org/10.1046/j.1365-2761.2003.00508.x

    Article  CAS  Google Scholar 

  • Rodrigues S, Antunes SC, Nunes B, Correia AT (2019) Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. Environ Sci Pollut Res 26(15):15481–15495. https://doi.org/10.1007/s11356-019-04954-0

    Article  CAS  Google Scholar 

  • Rowan MW (2007) Use of blood parameters as biomarkers in brown bullheads (Ameiurus nebulosus) from Lake Erie tributaries and Cape Cod ponds. Dissertation. Ohio State University.

  • Sandhu SS, Lower WR (1989) In situ assessment of genotoxic hazards of environmental pollution. Toxicol Ind Health 5(1):73–83. https://doi.org/10.1177/074823378900500107

    Article  CAS  Google Scholar 

  • Santos RMB, Monteiro SM, Cortes RMV, Pacheco FAL, Fernandes LS (2021) Seasonal effect of land use management on gill histopathology of Barbel and Douro Nase in a Portuguese watershed. Sci Total Environ 764:142869. https://doi.org/10.1016/j.scitotenv.2020.142869

    Article  CAS  Google Scholar 

  • Squier MK, Cohen JJ (2001) Standard quantitative assays for apoptosis. Mol Biotechnol 19(3):305–312. https://doi.org/10.1385/MB:19:3:305

    Article  CAS  Google Scholar 

  • Subotić S, Višnjić-Jeftić Ž, Spasić S, Hegediš A, Krpo-Ćetković J, Lenhardt M(2013a) Distribution and accumulation of elements (As, Cu, Fe, Hg, Mn, and Zn) in tissues of fish species from different trophic levels in the Danube River at the confluence with the Sava River, Serbia. Environ Sci Pollut Res 20(8):5309–5317. https://doi.org/10.1007/s11356-013-1522-3

    Article  CAS  Google Scholar 

  • Subotić S, Spasić S, Višnjić-Jeftić Ž, Hegediš A, Krpo-Ćetković J, Mićković B, Skorić S, Lenhardt M(2013b) Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River, Serbia. Ecotoxicol Environ Saf 98:196–202. https://doi.org/10.1016/j.ecoenv.2013.08.020

    Article  CAS  Google Scholar 

  • Subotić S, Višnjić-Jeftić Ž, Đikanović V, Spasić S, Krpo-Ćetković J, Lenhardt M (2019) Metal accumulation in muscle and liver of the common nase (Chondrostoma nasus) and vimba bream (Vimba vimba) from the Danube River, Serbia: bioindicative aspects. Bull Environ Contam Toxicol 103(2):261–266. https://doi.org/10.1007/s00128-019-02657-3

    Article  CAS  Google Scholar 

  • Subotić S, Višnjić-Jeftić Ž, Bojović S, Đikanović V, Krpo-Ćetković J, Lenhardt M (2021) Seasonal variations of macro-, micro-, and toxic elements in tissues of vimba bream (Vimba vimba) from the Danube River near Belgrade, Serbia. Environ Sci Pollut Res 28(44):63087–63101. https://doi.org/10.1007/s11356-021-15073-0

    Article  CAS  Google Scholar 

  • Sunjog K, Kolarević S, Kračun-Kolarević M, Višnjić-Jeftić Ž, Skorić S, Gačić Z, Lenhardt M, Vasić N, Vuković-Gačić B(2016) Assessment of status of three water bodies in Serbia based on tissue metal and metalloid concentration (ICP-OES) and genotoxicity (comet assay). Environ Pollut 213:600–607. https://doi.org/10.1016/j.envpol.2016.03.008

    Article  CAS  Google Scholar 

  • The European Parliament and the Council of the EU (2006) Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC

  • The Statistical Office of the Republic of Serbia (2017) https://publikacije.stat.gov.rs/G2018/PdfE/G20181128.pdf, https://publikacije.stat.gov.rs/G2018/PdfE/G20181148.pdf. Accessed on 13th of October 2021

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Van Dyk JC, Marchand MJ, Smit NJ, Pieterse GM (2009) A histology-based fish health assessment of four commercially and ecologically important species from the Okavango Delta panhandle, Botswana. Afr J Aquat Sci 34(3):273–282. https://doi.org/10.2989/AJAS.2009.34.3.9.985

    Article  Google Scholar 

  • Varol M, Sünbül MR (2020) Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ Res 184:109298. https://doi.org/10.1016/j.envres.2020.109298

    Article  CAS  Google Scholar 

  • Viana HC, Jesus WB, Silva SKL, Jorge MB, Santos DMS, Neta RNF (2021) Aggregation of hepatic melanomacrophage centers in S. herzbergii (Pisces, Ariidae) as indicators of environmental change and well-being. Arq Bras Med Vet Zootec 73:868–876. https://doi.org/10.1590/1678-4162-12327

    Article  Google Scholar 

  • Vilizzi L, Tarkan AS (2016) Bioaccumulation of metals in common carp (Cyprinus carpio L.) from water bodies of Anatolia (Turkey): a review with implications for fisheries and human food consumption. Environ Monit Assess 188(4):243. https://doi.org/10.1007/s10661-016-5248-9

    Article  CAS  Google Scholar 

  • Vincze K, Scheil V, Kuch B, Köhler HR, Triebskorn R (2015) Impact of wastewater on fish health: a case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools. Environ Sci Pollut Res 22(15):11822–11839. https://doi.org/10.1007/s11356-015-4398-6

    Article  CAS  Google Scholar 

  • Vuković-Gačić B, Kolarević S, Sunjog K, Tomović J, Knežević-Vukčević J, Paunović M, Gačić Z (2014) Comparative study of the genotoxic response of freshwater mussels Unio tumidus and Unio pictorum to environmental stress. Hydrobiologia 735(1):221–231. https://doi.org/10.1007/s10750-013-1513-x

    Article  CAS  Google Scholar 

  • Wilhelm S, Henneberg A, Köhler HR, Rault M, Richter D, Scheurer M, Suchail S, Triebskorn R (2017) Does wastewater treatment plant upgrading with activated carbon result in an improvement of fish health? Aquat Toxicol 192:184–197. https://doi.org/10.1016/j.aquatox.2017.09.017

    Article  CAS  Google Scholar 

  • Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool Ecol 23(4):275–281. https://doi.org/10.1080/21658005.2013.846963

    Article  Google Scholar 

  • Yi YJ, Zhang SH (2012) The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environ Sci 13:1699–1707. https://doi.org/10.1016/j.proenv.2012.01.163

    Article  CAS  Google Scholar 

  • Žegura B, Heath E, Černoša A, Filipič M (2009) Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75(11):1453–1460. https://doi.org/10.1016/j.chemosphere.2009.02.041

    Article  CAS  Google Scholar 

  • Zhao S, Feng C, Quan W, Chen X, Niu J, Shen Z (2012) Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar Pollut Bull 64(6):1163–1171. https://doi.org/10.1016/j.marpolbul.2012.03.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract Nos. 451-03-68/2022-14/200053, 451-03-68/2022-14/ 200178, 451-03-68/2022-14/200007, 451-03-68/2022-14/200116). We gratefully acknowledge technician Zorica Radović for preparing the histological samples. The improvement of our English by Luka Gačić is greatly appreciated.

Author contributions

ML and BV-G contributed to the study design, conceptualisation, and resources. JK-V and SK contributed to material preparation, data collection, and analysis of the comet assay on HepG2 and fish cells, as well as microbiological analysis. KS performed a micronucleus assay. SS conducted a study of erythrocyte morphometry. ŽV-J performed the analysis of metals and metalloids concentrations in fish tissues. VP and BR were responsible for the histopathological analyses of fish tissues. The first draft of the manuscript was written by JK-V. All authors commented on previous versions. All authors read and approved the final manuscript.

Funding

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract Nos. 451-03-68/2022-14/200053, 451-03-68/2022-14/200178, 451-03-68/2022-14/200007, 451-03-68/2022-14/200116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovana Kostić-Vuković.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostić-Vuković, J., Kolarević, S., Sunjog, K. et al. Combined use of biomarkers to assess the impact of untreated wastewater from the Danube River, Serbia. Ecotoxicology 32, 583–597 (2023). https://doi.org/10.1007/s10646-023-02663-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02663-6

Keywords

Navigation