Skip to main content
Log in

Determination of stomatic density, index, and area as exposition biomarkers of pollution in Deschampsia antárctica Desv. (Poaceae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Until not so long ago, Antarctica was considered to be a polar region practically pristine. The Antarctic Peninsula has the highest concentration of scientific stations from different countries. Anthropogenic activity has caused alterations in the Antarctic ecosystems directly affecting terrestrial vegetation. This fact requires the finding of biomarkers in native plants to estimate the effects of human impact. Deschampsia antarctica Desv. (Poaceae) is the unique native grass described so far for Antarctica and was used for multiple investigations. In this study, plants were collected on Carlini scientific station, 25 de Mayo (King George) Island, Potter Peninsula, South Shetland Islands. Thus, the main objective planned consists of the evaluation of leaf stomata-related parameters as pollution biomarkers. The results of the stomatic index (SI), density (SD), and area (SA) were shown at sites with different levels of human impact (close and far away from the scientific station). It was found that the correlation between SD and SI, on the adaxial side of the leaves, resulted in a good biomarker for estimating the degree of anthropogenic impact in each studied area.

Graphical abstract

Highlights

  • Deschampsia antarctica leaves reflect anthropogenic impact.

  • No differences in the structure or size of the stomatal pores on either side of the leaves were found

  • Correlation between SD and SI on the adaxial side of the leaves could be a good biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbruzzese G, Beritognolo I, Muleo R, Piazzai M, Sabatti M, Scarascia Mugnozza G, Kuzminsky E (2009) Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ Exp Bot 66:381–388. https://doi.org/10.1016/j.envexpbot.2009.04.008

    Article  CAS  Google Scholar 

  • Abid R, Sharmeen S, Perveen A (2007) Stomatal types of monocots within flora of Karachi, Pakistan. Pak J Bot 39:15–21. Google Scholar

    Google Scholar 

  • Alberdi M, Bravo LA, Corcuera, LJ (2004) Ecofisiología de las plantas antárticas. In: Hernán Marino Cabrera (Ed.), Fisiología ecológica en plantas. Mecanismos y Respuestas a Estrés en los Ecosistemas. EUV. Valparaíso, Chile. Pp 249–265.

  • Araújo WL, Fernie AR, Nunes-Nesi A (2011) Control of stomatal aperture. A renaissance of the old guard. Plant Signal Behav 6:1305–1311. https://doi.org/10.4161/psb.6.9.16425

    Article  CAS  Google Scholar 

  • Bacci E, Gaggi C (1987) Chlorinated hydrocarbon vapors and plant foliage: Kinetics and applications. Chemosphere 16:2515–2522. https://doi.org/10.1016/0045-6535(87)90309-2

    Article  CAS  Google Scholar 

  • Barcikowski A, Czaplewska J, Giełwanowska I, Loro P, Smyka J (2001) Deschampsia antarctica (Poaceae) – the only native grass from Antarctica. In: Frey L, ed. Studies on grasses in Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences 367–377

  • Barcikowski A, Czaplewska J, Loro P, Lyszkiewicz A, Smykla J, Wojciechowska A (2003) Ecological variability of Deschampsia antarctica in the area of Admiralty Bay (King George Island, Maritime Antarctic). L Frey (Ed.). Problems of Grass Biology, W. Szafer Institute of Botany, PAS, Kraków: 383–396

  • Bennett MD, Smith JB, Lewis Smith RI (1982) DNA amounts of angiosperms from the Antarctic and South Georgia. Environ Exp Bot 22:307–318. https://doi.org/10.1016/0098-8472(82)90023-5

    Article  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 4:1494–1497. https://doi.org/10.1126/science.1096014

    Article  CAS  Google Scholar 

  • Bravo LA, Ullo N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in antarctic angiosperms. Physiol Plant 111:55–65. https://doi.org/10.1034/j.1399-3054.2001.1110108.x

    Article  CAS  Google Scholar 

  • Bruno G, Stiefkens L, Hadid M, Liscovsky I, Cosa MT, Dottori N (2007) Efecto de la contaminación ambiental en la anatomía de la hoja de Ligustrum lucidum (Oleaceae). Bol Soc Argent Bot 42:231–236.

    Google Scholar 

  • Burden A, Smeaton C, Angus S, Garbutt A, Jones L, Lewis HD, Rees SM (2020) Impacts of climate change on coastal habitats relevant to the coastal and marine environment around the UK. MCCIP Science Review 228–255. https://doi.org/10.14465/2020.arc11.chb

  • Casanova-Katny MA, Cavieres LA (2012) Antarctic moss carpets facilitate the growth of Deschampsia antarctica but not its survival. Polar Biol 35:1869–1878. https://doi.org/10.1007/s00300-012-1229-9

    Article  Google Scholar 

  • Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23. https://doi.org/10.1111/j.1469-8137.2007.02351.x

    Article  CAS  Google Scholar 

  • Casson SA, Hetherington AM (2010) Environmental regulation of stomatal development. Curr Opin Plant Biol 13:90–95. https://doi.org/10.1016/j.pbi.2009.08.005

    Article  CAS  Google Scholar 

  • Chwedorzewska KJ, Bednarek PT, Puchalski J (2004) Molecular variation of Antarctic grass Deschampsia antarctica Desv. From King George Island (Antarctica). Acta Soc Bot Pol 73:23–29. https://doi.org/10.5586/asbp.2004.004

    Article  CAS  Google Scholar 

  • Chwedorzewska KJ, Giełwanowska I, Szczuka E, Bochenek A (2008) High anatomical and low genetic diversity in Deschampsia antarctica Desv from King George Island. Polar Res 29:377–386

    Google Scholar 

  • Collins NJ (1969) The effects of volcanic activity on the vegetation of Deception Island. Br Antarct Surv Bull 21:79–94. Google Scholar

    Google Scholar 

  • Collins CD, Martin I, Doucette W (2011) Plant Uptake of Xenobiotics. In: Schröder P, Collins C (Eds.), Organic Xenobiotics and Plants. Plant Ecophysiology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9852-8_1

  • Convey P (1996) Reproduction of antarctic flowering plants. Antarct Sci 8:127–134. https://doi.org/10.1017/s0954102096000193

    Article  Google Scholar 

  • Cornejo Toledo JE (2019) Respuesta al estrés de gramíneas polares y cultivos: la importancia de la inversión de los recursos en hoja. Grau de Biología. Facultat de Ciències. Universitat des les Illes Balears

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The Families of the Monocotyledons. Structure, Evolution, and Taxonomy. Springer–Verlag. Berlin Heidelberg New York Tokyo 1985. https://doi.org/10.1007/978-3-642-61663-1

  • Dale VG, Delgado Acevedo J, MacMahon J (2005) Effects of modern volcanic eruptions on vegetation. In: Volcanoes and the Environment. (Eds.) J Martí and GG Ernst. Published by Cambridge University Press. https://doi.org/10.1017/cbo9780511614767.009

  • Dimitrova I, Yurukova L (2005) Bioindication of anthropogenic pollution with Plantago lanceolata (Plantaginaceae): metal accumulation, morphological and stomatal leaf characteristics. Phytol Balcan 11:89–96. Google Scholar

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Domaciuk M, Leszczuk A, Szczuka E, Kellmann-Sopyła W, Koc J, Giełwanowska I (2016) Female sporogenesis in the native antarctic grass Deschampsia antarctica Desv. Pol Polar Res 37:289–302. https://doi.org/10.1515/popore-2016-0016

    Article  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Phil. Trans. R. Soc. B 367:547–555. https://doi.org/10.1098/rstb.2011.0272

    Article  CAS  Google Scholar 

  • Dopchiz LP, Poggio L (1999) Meiosis and pollen grain development in Isolepis cernua f. cernua (Cyperaceae). Caryologia 52:197–201. https://doi.org/10.1080/00087114.1998.10589173

    Article  Google Scholar 

  • Ellis RP (1979) A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia 12:641–671. https://doi.org/10.4102/abc.v12i4.1441

    Article  Google Scholar 

  • Ernst WHO, Peterson PJ (1994) The role of biomarkers in environmental assessment (4). Terrestrial plants. Ecotoxicology 3:180–192. https://doi.org/10.1007/BF00117083

    Article  CAS  Google Scholar 

  • Ernst WHO (2003) The use of higher plants as bioindicators. In: Markert BA, Breure AM, Zechmeister HG (Eds.). Bioindicators & Biomonitors. Principles, Concepts and Applications. Trace Metals and other Contaminants in the Environment 6. Elsevier. The Netherlands. Pp. 423–463. https://doi.org/10.1016/S0927-5215(03)80142-X

  • Evert RF (2006) Esau´s plant anatomy: Meristems, cells, and tissues of the plant body. Their structure, function, and development, third edition. J. Wiley & Sons Inc. https://doi.org/10.1093/aob/mcm015

  • Ferrat L, Pergent-Martini C, Romeo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65:187–204. https://doi.org/10.1016/S0166-445X(03)00133-4

    Article  CAS  Google Scholar 

  • Ferriol M, Muñoz S, Merle H, Garmendia A, López C (2004) Papel de los árboles ornamentales como bioindicadores de la contaminación atmosférica urbana. Actas de Horticultura 68. ISBN 978846173029‐9

  • Finot VL, Baeza CM, Matthei O (2006) Micromorfología de la epidermis de la lemma de Trisetum y géneros afines (Poaceae, Pooideae). Darwiniana 44:32–57. ISSN 0011-6793

    Google Scholar 

  • Feller U (2006) Stomatal opening at elevated temperature: an underestimated regulatory mechanism? Gen. Appl. Plant Physiology special issue:19–31

  • Fusaro L, Gerosa G, Salvatori E, Marzuoli R, Monga R, Kuzminsky E, Angelaccio C, Quarato D, Fares S (2015) Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment. Plant Biology 18:13–21. https://doi.org/10.1111/plb.12383

    Article  CAS  Google Scholar 

  • García FP, Vargas MA, Marzo MAM, Esteban EB, Oyarzún JCG (2006) Daños tóxicos en tejidos vegetales, producidos por aguas contaminadas con arsénico en Zimapán, Hidalgo, México. Ciênc Tecnol Aliment Campinas 26:94–97. https://doi.org/10.1590/S0101-20612006000100016

    Article  Google Scholar 

  • Ganem DG, Equiza MA, Lorenzo M, Tognetti JA (2014) Cambios en la anatomía epidérmica foliar de cereales de clima templado en respuesta al frío. Rev Fac Agron La Plata 113:157–164

    Google Scholar 

  • Gao Y, Li R, Gao H, Hou C, Jin S, Ye J, Na G (2021) Spatial distribution of cumulative impact on terrestrial ecosystem of the Fildes Peninsula, Antarctica. J Environ Manage 279–111735. https://doi.org/10.1016/j.jenvman.2020.111735

  • Giełwanowska I, Szczuka E, Bednara J, Gòrecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119. https://doi.org/10.1093/aob/mci262

    Article  Google Scholar 

  • Gielwanowska I, Szczuka E (2005) New ultrastructural features of organelles in leaf cells of Deschampsia antarctica Des. Polar Biol 28:951–955. https://doi.org/10.1007/s00300-005-0024-2

    Article  Google Scholar 

  • González ML, Urdampilleta JD, Fasanella M, Premoli AC, Chiapella JO (2016) Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in antarctic and patagonic populations. Polar Biol 39:1663–1677. https://doi.org/10.1007/s00300-016-1890-5

    Article  Google Scholar 

  • Grimoldi AA, Insausti P, Roitman GG, Soriano A (1998) Responses to flooding intensity in Leontodon taraxacoides. New Phytol 141:119–128. https://doi.org/10.1046/j.1469-8137.1999.00325.x

    Article  Google Scholar 

  • Holderegger R, Stehlik I, Lewis Smith RI, Abbott RJ (2003) Populations of antarctic hairgrass (Deschampsia antarctica) show low genetic diversity. Arct Antarct Alp Res 35(2):214–217. https://doi.org/10.1657/1523-0430(2003)035[0214:POAHDA]2.0.CO;2

    Article  Google Scholar 

  • Hotes S, Poschlod P, Takahashi H, Grootjans AP, Adema E (2004) Effects of tephra deposition on mire vegetation: a field experiment in Hokkaido, Japan. J. Ecol 92:624–634. https://doi.org/10.1111/j.0022-0477.2004.00901.x

    Article  Google Scholar 

  • Huang D, Wu L, Chen JR, Dong L (2011) Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica 49:611–618. https://doi.org/10.1007/s11099-011-0076-1

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M (1999) Structural, functional and biochemical responses of Datura innoxia Mill. to coal-smoke pollution. Proc Acad Environ Biol 8:61–72. Google Scholar

    Google Scholar 

  • Idaszkin YL, Márquez F, Mateos-Naranjo E, Pollicellia M, Saraví Cisneros H (2019) Multidimensional approach to evaluate Limonium brasiliense as source of early biomarkers for lead pollution monitoring under different saline conditions. Ecol Indic 104:567–575. https://doi.org/10.1016/j.ecolind.2019.05.041

    Article  CAS  Google Scholar 

  • Idris A, Linatoc AC, Aliyu AM, Muhammad SM, Bin Abu Bakar MF (2018) Effect of light on the photosynthesis, pigment content and stomatal density of sun and shade leaves of Vernonia amygdalina. Int J Eng Technol 7:209–212. https://doi.org/10.14419/ijet.v7i4.30.22122

    Article  CAS  Google Scholar 

  • Jägerbrand AK, Alatalo JM (2015) Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden. Springerplus 4:2–12. https://doi.org/10.1186/s40064-015-0876-z

    Article  Google Scholar 

  • Jiménez SJ, Moreno FL, Magnitskiy S (2013) Respuesta de las plantas a estrés por inundación. Una revisión. Revista Colombiana De Ciencias Hortícolas 6:96–109. https://doi.org/10.17584/rcch.2012v6i1.1287

    Article  Google Scholar 

  • Jumrani K, Bhatia VS, Pandey GP (2017) Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynth Res 131:333–350. https://doi.org/10.1007/s11120-016-0326-y

    Article  CAS  Google Scholar 

  • Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Potters G, Samson R (2010) Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ Pollut 158:788–794. https://doi.org/10.1016/j.envpol.2009.10.006

    Article  CAS  Google Scholar 

  • Köhler H, Contreras RA, Pizarro M, Cortés-Antíquera R, Zúñiga GE (2017) Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Front Plant Sci 8:921. https://doi.org/10.3389/fpls.2017.00921

    Article  Google Scholar 

  • Komárková V, Poncet S, Poncet J (1990) Additional and revisited localities of vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. in the antarctic peninsula area. Arct Antarct Alp Res 22:108–113. https://doi.org/10.2307/1551725

    Article  Google Scholar 

  • Komolafe RJ, Akinola OM, Agbolade OJ (2015) Effect of petrol and spent oil on the (Sorghum bicolor L.) growth of Guinea Corn. Int J Plant Biol 6:10–14. https://doi.org/10.4081/pb.2015.5883

    Article  CAS  Google Scholar 

  • Lázaro Nogal A, Matesanz S, Godoy A, Pérez Trautman F, Gianoli E, Valladares F (2015) Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J Ecol 103:338–350. https://doi.org/10.1111/1365-2745.12372

    Article  Google Scholar 

  • Lawson T, Simkin AJ, Kelly G, Granot D (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytologist 203:1064–1081. https://doi.org/10.1111/nph.12945

    Article  CAS  Google Scholar 

  • Lewis Smith RI (1988) Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol Conserv 45:55–72. https://doi.org/10.1016/0006-3207(88)90052-3

  • Lewis Smith RI (1994) Vascular plants as bioindicators warming in Antarctica. Oecologia 99:322–328

    Article  Google Scholar 

  • López J, Devesa JA (1991) Contribución al conocimiento de la anatomía foliar de las Avenae (Poaceae, Pooideae) del centro-oeste de España. An Jard Bot Madr 48:171–187. Google Scholarn of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol Conserv 45:55–72. https://doi.org/10.1016/0006-3207(88)90052-3

    Article  Google Scholar 

  • Lösh R, Tenhunen JD (1981) Stomatal responses to humidity- phenomenon and mechanism. In: Jarvis PG and Mansfield TA eds. Stomatal Physiology. Society for Experimental Biology. Seminar series: 8. 1st ed. Cambridge University Press, Cambridge, p 137–16

  • Malvicini M, Gutierrez-Moraga A, Rodriguez MM, Gomez-Bustillo S, Salazar L, Sunkel C, Nozal L, Salgado A, Hidalgo M, Lopez-Casas PP, Novella JL, Vaquero JJ, Alvarez-Builla J, Mora A, Gidekel M, Mazzolini G (2018) A Tricin derivative from Deschampsia antarctica Desv. inhibits colorectal carcinoma growth and liver metastasis through the induction of a specific immune response. Mol Cancer Ther 17:966–976. https://doi.org/10.1158/1535-7163.MCT-17-0193

    Article  CAS  Google Scholar 

  • Meidner H, Mansfield TA (1965) Stomatal responses to illumination. Biological Reviews 40:483–508. https://doi.org/10.1111/j.1469-185x.1965.tb00813.x

    Article  Google Scholar 

  • Meister H, Bolhàr Nordenkampf HR (2003) Stomata imprints: a new and quick method to count stomata and epidermis cells. In: Reigosa Roger MJ (Eds.). Handbook of Plant Ecophysiology Techniques. Kluwer Academic Publishers. New York, pp. 234–250. https://doi.org/10.1007/0-306-48057-3_17

  • Mena Torres F, Pinnock Branford M, Echeverría Sáenz S, Castillo Martínez LE, Ugalde Salazar R (2017) Biomarkers in native Central American species. In: Araújo CVM, Shinnc (Eds). Ecotoxicology in Latin America. Nova Science Publisher, Inc, New York, pp. 13–21

  • Mishraa VK, Kima KH, Hong S, Lee K (2004) Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmos Environ 38:4069–4084. https://doi.org/10.1016/j.atmosenv.2004.03.052

    Article  CAS  Google Scholar 

  • Molina-Montenegro MA, Bergstrom DM, Chwedorzewska KJ, Convey P, Chown SL (2019) Increasing impacts by Antarctica’s most widespread invasive plant species as result of direct competition with native vascular plants. NeoBiota 51:19–40. https://doi.org/10.3897/neobiota.51.37250

    Article  Google Scholar 

  • Montiel P, Smith A, Keiller D (1999) Photosynthetic responses of selected antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res 18:229–235. https://doi.org/10.3402/polar.v18i2.6579

    Article  Google Scholar 

  • Mooney HA, Winner WE, Pell EJ (1991) Response of plants to multiple stresses. Academic Press. San Diego, Californa. USA

  • Morales Rodríguez A, Guerrero Mendoza ZV, Morales Tejón A, Rodríguez del Sol D, Rodríguez Morales S (2016) Caracterización estomática de cuatro variedades de papa (Solanum tuberosum L.). Rev Agricultura Tropical 2:9–17

    Google Scholar 

  • Naizaque J, García G, Fisher G, Melgarejo LM (2014) Relación entre la densidad estomática, la transpiración y las condiciones ambientales en Feijoa (Acta sellowiana [O. Berg] Burret). Revista U.D.C.A. Actualidad & Divulgación Científica 17:115–121. https://doi.org/10.31910/rudca.v17.n1.2014.946

    Article  Google Scholar 

  • Navrotska DO, Twardovska MO, Andreev IO, Parnikoza IYU, Betekhtin AA, Zahrychuk OM, Drobyk NM, Hasterok R, Kunakh VA (2014) New forms of chromosome polymorphism in Deschampsia antarctica Desv. from the Argentine islands of the maritime antarctic region. UAJ 13:185–191. https://doi.org/10.33275/1727-7485.13.2014.226

    Article  Google Scholar 

  • Nuzhyna N, Parnikoza I, Poronnik O, Kozeretska I, Kunakh V (2019) Anatomical variations of Deschampsia antarctica É. Desv. plants from distant Antarctic regions, in vitro culture, and in relations to Deschampsia caespitosa (L.) P. Beauv. Pol Polar Res 40(4):361–383. https://doi.org/10.24425/ppr.2019.130903

    Article  Google Scholar 

  • Nuzhyna N, Kunakh V, Poronnik O, Parnikoza I (2021) Preservation of features of anatomical polymorphism of Deschampsia antarctica É. Desv. (Poaceae) during in vitro clonal reproduction. Acta Agrobotanica 74:1–11. https://doi.org/10.5586/aa.7416

    Article  Google Scholar 

  • Oosting HJ (1945) Tolerance to salt spary of plants of coastal dunes. Ecology 26:85–89. https://doi.org/10.2307/1931917

    Article  Google Scholar 

  • Pardos JA (2004) Respuestas de las plantas al anegamiento del suelo. Invest Agrar: Sist Recur For Fuera de serie: 101–107. https://doi.org/10.5424/srf/200413S1-00858

  • Park JS, Ahn IY, Lee EJ (2013) Spatial distribution patterns of the antarctic hair grass deschampsia antarctica in relation to environmental variables on Barton Peninsula, King George Island. Arct Antarct Alp Res 45:563–574. https://doi.org/10.1657/1938-4246-45.4.563

    Article  Google Scholar 

  • Parnikoza I, Kozeretska I, Kunakh V (2011) Vascular plants of the maritime antarctic: origin and adaptation. Am J Plant Sci 2:381–395. https://doi.org/10.4236/ajps.2011.23044

    Article  Google Scholar 

  • Parnikoza IY, Miryuta NY, Maidanyuk DN, Loparev SA, Korsun SG, Budzanivska IG, Shevchenko TP, Polischuk VP, Kunakh VA, Kozeretska IA (2007) Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in the Maritime Antarctica. Polar Sci. 1:121–128. https://doi.org/10.1016/j.polar.2007.10.002

    Article  Google Scholar 

  • Pastor J, Gutiérrez-Maroto A, Jesús Hernández A (2003) Biomarcadores a nivel de una comunidad de pasto y de una población herbácea forrajera para suelos contaminados por cobre. An. Biol. 25:103–108

    Google Scholar 

  • Pedrol N, Ramos P, Reigosa MJ (2000) Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. J. Plant Physiol 157:383–393. https://doi.org/10.1016/S0176-1617(00)80023-1

    Article  CAS  Google Scholar 

  • Pourkhabbaz A, Rastin N, Olbrich A, Langenfeld Heyser R, Polle A (2010) Influence of environmental pollution on leaf properties of urban plane trees, platanus orientalis L. Bull. Environ Contam Toxicol 85:251–255. https://doi.org/10.1007/s00128-010-0047-4

    Article  CAS  Google Scholar 

  • Prabhakar M (2004) Structure, delimitation, nomenclature and classification of stomata. Acta Bot Sin 46(2):242–252. Google Scholar

    Google Scholar 

  • Rabokon AM, Pirko YV, Ye Demkovych A, Andreev IO, Parnikoza IYU, Kozeretska IA, Yu Z, Kunakh VA, Blume YB (2019) Intron length polymorphism of β-tubulin genes in Deschampsia antarctica across the western coast of the Antarctic Peninsula. Polar Sci 19:151–154. https://doi.org/10.1016/j.polar.2018.11.001.

    Article  Google Scholar 

  • Rasband WS (2017) ImageJ v1.51. U.S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/

  • Ratola N, Homem V, Silva JA, Araújo R, Amigo JM, Santos L, Alves A (2014) Biomonitoring of pesticides by pine needles—Chemical scoring, risk of exposure, levels and trends. Sci Total Environ 476–477:114–124. https://doi.org/10.1016/J.SCITOTENV.2014.01.003

    Article  Google Scholar 

  • Rivera P, Villaseñor JL, Terrazas T (2013) The Asteraceae stomatal complex and its relationship with the atmospheric CO2 increase in the Reserva Ecológica del Pedregal de San Ángel. Mexico RMB 84:499–508. https://doi.org/10.7550/rmb.30933

    Article  Google Scholar 

  • Romero M, Casanova A, Iturra G, Reyes A, Montenegro G, Alberdi M (1999) Leaf anatomy of Deschampsia antarctica (Poaceae) from Maritime Antarctic and its plastic response to changes in the growth conditions. Rev Chil Hist Nat 72:411–425. Google Scholar

    Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167. https://doi.org/10.1007/s00300-008-0515-z

    Article  Google Scholar 

  • Ruhland CT, Day TA (2000) Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109:244–251

    Article  CAS  Google Scholar 

  • Sakagami JI, Iwata Y, Nurrahma AHI, Siaga E, Junaedi A, Yabuta S (2020) Plant adaptations to anaerobic stress caused by flooding. IOP Conference Series: EES 418:12–80. https://doi.org/10.1088/1755-1315/418/1/012080

    Article  Google Scholar 

  • Salas JA, Sanabria ME, Pire R (2001) Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum mill.) sometidas a tratamientos salinos. Bioagro 13:99–104

    Google Scholar 

  • Sanchez Anta MA, Gallego Martin F, Navarro Andrés AF (1988) Aspectos anatómicos de la epidermis de algunas especies subnitrofilas de Bromus L. y su cariologia. Acta Rot Barc 37:335–344

    Google Scholar 

  • Sandermann Jr H (1992) Plant metabolism of xenobiotics. TIBS 17:82–84. https://doi.org/10.1016/0968-0004(92)90507-6

    Article  CAS  Google Scholar 

  • Sandermann HJr (2000) Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environ Pollut 108:327–332. https://doi.org/10.1016/S0269-7491(99)00211-0

    Article  Google Scholar 

  • Shao D, Zhou W, Bouma TJ, Asaeda T, Wang ZB, Xiaoling L, Sun T, Cui B (2020) Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Ann Bot 125:291–299. https://doi.org/10.1657/1938-4246-45.4.563

    Article  CAS  Google Scholar 

  • Schoch PG, Zinsou C, Sibi M (1980) Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L.: effect of light intensity. J Exp Bot 31:1211–1216. https://doi.org/10.1093/jxb/31.5.1211

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: The Principles and Practice of Statistics in Biological Research, third ed, WH Freeman and Co., New York

  • Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Antartct Sci 21(1):3–33. https://doi.org/10.1017/S0954102009001722

    Article  Google Scholar 

  • Vera LM (2011) Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Res 30:7146. https://doi.org/10.3402/polar.v30i0.7146

    Article  Google Scholar 

  • Willmer C, Fricker M (1996) Stomata, second ed. Chapman and Hall. London. 367 p. ISBN 978-94-011-0579-8

  • Woolfenden HC, Baillie AL, Gray JE, Hobbs JK, Morris RJ, Fleming AJ (2018) Models and mechanisms of stomatal mechanics. Trends Plant Sci 23(9):822–832. https://doi.org/10.1016/j.tplants.2018.06.003

    Article  CAS  Google Scholar 

  • Wu Z, Chen L, Yu Q, Zhou W, Gou X, Li J, Hou S (2019) Multiple transcriptional factors control stomata development in rice. New Phytol 223:220–232. https://doi.org/10.1111/nph.15766

    Article  CAS  Google Scholar 

  • Zamarrón A, Morel E, Lucena SR, Mataix M, Pérez-Davó A, Parrado C, González S (2019) Extract of Deschampsia antarctica (EDA) prevents dermal cell damage induced by UV Radiation and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Int J Mol Sci 20:1–18. https://doi.org/10.3390/ijms20061356

    Article  CAS  Google Scholar 

  • Zarinkamar F (2006) Density, size and distribution of stomata in different Monocotyledons. Pak J Biol Sci 9:1650–1659. https://doi.org/10.3923/pjbs.2006.1650.1659

    Article  Google Scholar 

  • Zoulias N, Harrison EL, Casson SA, Gray JE (2018) Molecular control of stomatal development. Biochem J 475:441–454. https://doi.org/10.1042/BCJ20170413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Instituto Antártico Argentino staff that collaborated in sampling. We acknowledge Dr. Alejandro Buren who helped in revising the language of the manuscript. This work was funded by the PICTA 0091 (DNA-IAA) project.

Funding

This work was funded by the PICTA 0091 (DNA-IAA) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Patricia Dopchiz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All applicable international, national, and institutional guidelines for sampling, care and experimental use of plants for the study were followed as established by the Article III, Annex II of the Madrid Protocol, Law 24.216 (Taking, Harmful Intrusion and Introduction of Species) within the framework of the projects evaluated by the Environment Office of the IAA and Dirección Nacional del Antártico (DNA).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dopchiz, L.P., Ansaldo, M. Determination of stomatic density, index, and area as exposition biomarkers of pollution in Deschampsia antárctica Desv. (Poaceae). Ecotoxicology 31, 1321–1329 (2022). https://doi.org/10.1007/s10646-022-02589-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02589-5

Keywords

Navigation