Skip to main content
Log in

Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review

  • Mini-Review
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Nanoscale zero-valent iron particles (NZVI) are widely used in a variety of industries owing to their advantageous mechanical, physical, and chemical properties. These particles can be released into environmental media, including water, soil, and air, through several pathways. NZVI in the ecosystem can be taken up, excreted and distributed within organisms, which is harmful to plants, animals and humans. Plants play a significant role as producers in the ecological circle and can both positively and negatively affect the ecological behavior of NZVI. Therefore, understanding the relationship between plants and NZVI is likely to be of great value for the assessment of NZVI-associated risks and future research directions. In this review, we summarize the current knowledge on the uptake, distribution, and accumulation of NZVI in plants; the phytotoxicity triggered by NZVI exposure at the physiological, biochemical, and molecular levels; and the defense mechanism used by plants to defend against NZVI-induced insults. We further discuss the toxic effects of NZVI on soil animals and microorganisms as well as the risk posed by the presence of NZVI in the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request. The data has not been modified in anyway.

References

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584

    Article  CAS  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-YJES (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735

    Article  CAS  Google Scholar 

  • Barnes RJ, van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ, Thompson IPJJOHM (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184(1-3):73–80

    Article  CAS  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes VJC (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857

    Article  CAS  Google Scholar 

  • Bennett RN, Wallsgrove RMJNP (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127(4):617–633

    Article  CAS  Google Scholar 

  • Briat J-F, Lobréaux, SJTIPS (1997). Iron transport and storage in plants. Trends Plant Sci. 2(5):187–193

  • Cabiscol Català E, Tamarit Sumalla J, Ros Salvador JJIM (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    Google Scholar 

  • Cao J, Elliott D, Zhang W-XJJONR (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res. 7(4):499–506

  • Cao J, Zhang W-XJJOHM (2006) Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater 132(2-3):213–219

    Article  CAS  Google Scholar 

  • Cape JN (1994) Evaluation of pollutant critical levels from leaf surface characteristics, Air pollutants and the leaf cuticle. Springer, 123–138

  • Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Health Part a-Toxic/Hazardous Substances Environ Eng 44(6):576–582

    CAS  Google Scholar 

  • Chang Y-N, Zhang M, Xia L, Zhang J, Xing GJM (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

  • Chaudière J, Ferrari-Iliou RJF (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37(9-10):949–962

    Article  Google Scholar 

  • Chen PJ, Tan SW, Wu WL (2012) Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environ Sci Technol 46(15):8431–8439

    Article  CAS  Google Scholar 

  • Curie C, Alonso JM, JEAN ML, Ecker JR, Briat J-FJBJ (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Involvement of NRAMP1 from Arabidopsis Thaliana in Iron Transport 347(3):749–755

    CAS  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araujo JMJW (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Environ Sci Pollut Res Int 175(1):241–256

    Google Scholar 

  • Dawes C, Chan M, Chinn R, Koch E, Lazar A, Tomasko DJAB (1987) Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmannii from Florida. Aquatic Botany 27(2):195–201

  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma REJB (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919

    Article  CAS  Google Scholar 

  • de la Rosa G, García-Castañeda C, Vázquez-Núñez E, Alonso-Castro ÁJ, Basurto-Islas G, Mendoza Á, Cruz-Jiménez G, Molina CJPP (2017) Physiological and biochemical response of plants to engineered NMs: Implications on future design. Plant Physiol Biochem 110:226–235

    Article  CAS  Google Scholar 

  • Diao M, Yao MJWR (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43(20):5243–5251

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJJC (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89(1):76–82

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJJC (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92(1):131–137

    Article  CAS  Google Scholar 

  • El‐Temsah YS, Joner EJJET (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  CAS  Google Scholar 

  • Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WGTJFips (2012) Cell wall evolution and diversity. Front Plant Sci 3:152

    Article  CAS  Google Scholar 

  • Frei M, Tetteh RN, Razafindrazaka AL, Fuh MA, Wu LB, Becker M (2016) Responses of rice to chronic and acute iron toxicity: genotypic differences and biofortification aspects. Plant & Soil 408(1-2):1–13

    Article  CAS  Google Scholar 

  • Genon J, De Hepcée N, Delvaux B, Dufey J, Hennebert PJP (1994a) Redox conditions and iron chemistry in highland swamps of Burundi. Plant and Soil 166(2):165–171

  • Genon J, De Hepcee N, Duffy J, Delvaux B, Hennebert PJP (1994b) Iron toxicity and other chemical soil constraints to rice in highland swamps of Burundi. Plant and Soil 166(1):109–115

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi MJES (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    CAS  Google Scholar 

  • Ghauch AJC (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43(8):1109–1117

    Article  CAS  Google Scholar 

  • Ghosh I, Mukherjee A, Mukherjee AJM (2017) In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 32(3):371–387

    Article  CAS  Google Scholar 

  • Ghosh I, Sadhu A, Moriyasu Y, Bandyopadhyay M, Mukherjee A (2019) Genotoxicity of nanoscale zerovalent iron particles in tobacco BY-2 cells. Nucleus (India) 62(3)

  • Ghosh M, Bandyopadhyay M, Mukherjee AJC (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja NJPP (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wan J, Zhang C, Cheng M, Qin X, Xue WJES (2017) Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ Sci Technol 51(19):11308–11316

    Article  CAS  Google Scholar 

  • Grantz D, Garner J, Johnson DJEI (2003) Ecological effects of particulate matter. Environ Int 29(2-3):213–239

    Article  CAS  Google Scholar 

  • Green MA, Fry SCJN (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433(7021):83–87

    Article  CAS  Google Scholar 

  • Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun AJJOCH (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3-4):165–183

    Article  CAS  Google Scholar 

  • Guha T, Ravikumar K, Mukherjee A, Mukherjee A, Kundu RJPP (2018a) Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol Biochem 127:403–413

    Article  CAS  Google Scholar 

  • Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R (2018b) Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol Biochem 127:403

    Article  CAS  Google Scholar 

  • Howeler RHJSSSOAJ (1973) Iron-induced oranging disease of rice in relation to physico-chemical changes in a flooded oxisol. Soil Sci. Soc. Am. J. 37(6):898–903

    Article  CAS  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  Google Scholar 

  • Jiamjitrpanich W, Parkpian P, Polprasert C, Laurent F, Kosanlavit RJJOES (2012) The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(11):1506–1513

    Article  CAS  Google Scholar 

  • Johnson TL, Scherer MM, Tratnyek PGJES (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 30(8):2634–2640

  • Kadar E, Rooks P, Lakey C, White DAJSOTTE (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  Google Scholar 

  • Kadar E, Tarran GA, Jha AN, Al-Subiai SNJES (2011) Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity. Environ Sci Technol 45(8):3245–3251

    Article  CAS  Google Scholar 

  • Kim CKJ-YATY (2018) Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): mechanisms and transformation products of NZVI. Environ Sci Technol 52(6):3625–3633

    Article  CAS  Google Scholar 

  • Kim H, Hong H-J, Jung J, Kim S-H, Yang J-WJJOHM (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176(1-3):1038–1043

    Article  CAS  Google Scholar 

  • Kim J-H, Lee Y, Kim E-J, Gu S, Sohn EJ, Seo YS, An HJ, Chang Y-SJES (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48(6):3477–3485

    Article  CAS  Google Scholar 

  • Kim JH, Kim D, Seo SM, Kim D (2019) Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil. Ecotoxicology 28(8):869–877

    Article  CAS  Google Scholar 

  • Kim JY, Park H-J, Lee C, Nelson KL, Sedlak DL, Yoon JJA (2010) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76(22):7668–7670

    Article  CAS  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley J, Edwin G, Lowry GV, Tilton RDJES (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480

    Article  CAS  Google Scholar 

  • Kotchaplai P, Khan E, Vangnai ASJES (2017) Membrane alterations in Pseudomonas putida F1 exposed to nanoscale zerovalent iron: Effects of short-term and repetitive nZVI exposure. Environ Sci Technol 51(14):7804–7813

    Article  CAS  Google Scholar 

  • Kreyling W, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis AJJOT (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65(20):1513–1530

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DLJES (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  CAS  Google Scholar 

  • Lefevre E, Bossa N, Wiesner MR, Gunsch CKJSOTTE (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901

    Article  CAS  Google Scholar 

  • Li S, Wang W, Yan W, Zhang W-X (2014) Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci Processes Impacts 16(3):524–533

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Gao B, Zhang MJPO (2015) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations, Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One 10(4):e0122884

    Article  CAS  Google Scholar 

  • Li X-Q, Elliott DW, Zhang W-XJCRISS (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. 31(4):111–122

  • Li X-Q, Zhang W-XJL (2006) Iron nanoparticles: The core− shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10):4638–4642

    Article  CAS  Google Scholar 

  • Li Y, Li J, Zhang YJJOHM (2012) Mechanism insights into enhanced Cr (VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies. J Hazard Mater 227:211–218

    Google Scholar 

  • Li Z, Greden K, Alvarez PJ, Gregory KB, Lowry GVJES (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44(9):3462–3467

    Article  CAS  Google Scholar 

  • Liang J, Xia X, Yuan L, Zhang W, Lin K, Zhou B, Hu SJEP (2018) The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209). Environ Pollut 237:784–791

    Article  CAS  Google Scholar 

  • Libralato G, Devoti AC, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AVJE, Safety E (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Phytotoxicity of Ionic, Micro-and Nano-sized Iron in Three Plant Species 123:81–88

    CAS  Google Scholar 

  • Lien H-L, Zhang W-XJC (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Physicochemical Aspects 191(1-2):97–105

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PCJS (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  Google Scholar 

  • Lütz-Meindl U, Lütz CJM (2006) Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI. Micron 37(5):452–458

    Article  CAS  Google Scholar 

  • Ma B, Yu W, Jefferson WA, Liu H, Qu JJWR (2015a) Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction. Water Res 71:140–149

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015b) Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environ Sci Technol 49(12):7109–22

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing BJES (2015c) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122

    Article  CAS  Google Scholar 

  • Ma X, Gurung A, Deng YJSOTTE (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  CAS  Google Scholar 

  • Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril RJES (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46(4):2316–2323

    Article  CAS  Google Scholar 

  • Marusenko Y, Shipp J, Hamilton GA, Morgan JL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings JJEP (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Bioavailability of Nanoparticulate Hematite to Arabidopsis Thaliana 174:150–156

    CAS  Google Scholar 

  • Mengel KJP (1994) Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil. 165(2):275–283

  • Müller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A, Leubner-Metzger GJPP (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150(4):1855–1865

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg LJE (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  Google Scholar 

  • Ottow J, Benckiser G, Watanabe I, Santiago SJTA (1983) Multiple nutritional soil stress as the prerequisite for iron toxicity of wetland rice (Oryza sativa L.)

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JLJJOA (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-Y, Nunez J, Peralta-Videa JR, Gardea-Torresdey JLJJOA (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285

    Article  CAS  Google Scholar 

  • Sarwani M, Jumberi A, Noor AJFLIFE (1995) Management of rainfed wetland with iron toxicity problem for rice production in Indonesia. Fragile Lives Fragile Ecosyst. 299–312

  • Schopfer PJTPJ (2001) Hydroxyl radical-induced cell‐wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28(6):679–688

    Article  CAS  Google Scholar 

  • Semerad J, Pacheco NIN, Grasserova A, Prochazkova P, Pivokonsky M, Pivokonska L, Cajthaml T (2020) In vitro study of the toxicity mechanisms of nanoscale zero-valent iron (nZVI) and released iron ions using earthworm cells. Nanomaterials (Basel) 10(11):2189

    Article  CAS  Google Scholar 

  • Shao G, Chen M, Wang W, Mou R, Zhang GJPGR (2007) Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul. 53(1):33–42

    Article  CAS  Google Scholar 

  • Snowden RED, Wheeler BD (2014) Iron toxicity to fen plant species.

  • Sohn K, Kang SW, Ahn S, Woo M, Yang S-KJES (2006) Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40(17):5514–5519

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JCJES (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  Google Scholar 

  • Su C, Puls RWJES (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35(7):1487–1492

    Article  CAS  Google Scholar 

  • Tanaka A, Loe R, Navasero SA (1966) Some mechanisms involved in the development of iron toxicity symptoms in the rice plant. Soil Sci Plant Nutri 12(4):32–38

    Article  Google Scholar 

  • Tanaka A, Tadano TJPR (1972) Potassium in relation to iron toxicity of the rice plant. 21:1–12

  • Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  Google Scholar 

  • Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister DJTPJ (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31(5):589–599

    Article  CAS  Google Scholar 

  • Wang C-B, Zhang W-XJES (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. 31(7):2154–2156

  • Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao DJEP (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345

    Article  CAS  Google Scholar 

  • Wang Y, Fang Z, Kang Y, Tsang EPJJOHM (2014) Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater 275:230–237

    Article  CAS  Google Scholar 

  • Xu Y, Zhang W-XJI (2000) Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 39(7):2238–2244

  • Yamauchi M, Peng XJP (1995) Iron toxicity and stress-induced ethylene production in rice leaves. Plant Soil 173(1):21–28

    Article  CAS  Google Scholar 

  • Yan W, Herzing AA, Kiely CJ, Zhang W-X (2010) Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J Contaminant Hydrology 118(3-4):96–104

    Article  CAS  Google Scholar 

  • Yu X, Amrhein C, Deshusses MA, Matsumoto MRJES (2007) Perchlorate reduction by autotrophic bacteria attached to zerovalent iron in a flow-through reactor. Environ. Sci. Technol. 41(3):990–997

  • Yue CS, Du HL, Li Y, Yin NY, Peng B, Cui YS (2021) Stabilization of soil arsenic with iron and nano-iron materials: a review. J Nanosci Nanotechnol 21(1):10–21

    Article  CAS  Google Scholar 

  • Zhang S, Li J, Lykotrafitis G, Bao G, Suresh SJAM (2009) Size-dependent endocytosis of nanoparticles. Adv. Mater. 21(4):419–424

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin YJJOEM (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Hunan Province Natural Science Foundation of China (No. 2021JJ30357) and the Key Research and Development Program of Hunan Province (2022NK2014).

Author information

Authors and Affiliations

Authors

Contributions

SZ and KY conceived the idea and SL developed the format of the manuscript. SZ and AC performed the literature review and drafted the manuscript with input from SZ. JS and LP critically evaluated the manuscript. All authors reviewed and approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Si Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yi, K., Chen, A. et al. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. Ecotoxicology 31, 873–883 (2022). https://doi.org/10.1007/s10646-022-02565-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02565-z

Keywords

Navigation