Skip to main content

Advertisement

Log in

Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The toxicity of four herbicides in mixture (alachlor, diuron, des-isopropyl-atrazine and simazine) on the growth and the photosynthesis parameters of two marine diatoms Pseudo-niszchia mannii and Chaetoceros decipiens have been investigated for 9 days in monoculture and co-culture tests. The catalase (CAT) and guaiacol peroxidase (GPX) were also monitored to assess the oxidative stress response. In single-species assays, while both species displayed no affected instantaneous growth rate by herbicides, their physiological responses were different. Chl a content of P. mannii significantly decreased upon herbicide exposure, due probably to pigment destruction or inhibition of their synthesis. This decrease was associated with a reduction in the chlorophyll fluorescence parameters (ABS0/RC, TR0/RC, ET0/RC and DI0/RC). In contrast, C. decipiens maintained an effective photosynthetic performance under herbicide exposure, as Chl a per cell content and the specific energy fluxes per reaction center remained unchanged relative to control values. GPX activity was significantly higher in contaminated P. mannii and C. decipiens monocultures than in controls at early herbicide exposure (1 day), whereas a significant induction of CAT activity occurred later (from day 3 for C. decipiens and at day 9 for P. mannii) in response to herbicides. In control co-culture, P. mannii was eliminated by C. decipiens. As observed in the monoculture, the herbicides did not affect the photosynthetic performance of C. decipiens in co-culture, but significantly reduced its instantaneous growth rate. The oxidative stress response in co-culture has similar trends to that of C. decipiens in monoculture, but the interspecies competition likely resulted in higher CAT activity under herbicide exposure. Results of this study suggest that herbicide toxicity for marine diatoms might be amplified by interspecies interactions in natural communities, which might lead to different physiological and growth responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and material availability

All data and materials as well as software application or custom code comply with field standards.

References

  • Adler NE, Schmitt-Jansen M, Altenburger R (2007) Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem 26:297–306

    Article  CAS  Google Scholar 

  • Amato A, Montresor M (2008) Morphology phylogeny and sexual cycle of Pseudo-nitzschia mannii sp nov (Bacillariophyceae): A pseudo-cryptic species within the P pseudodelicatissima complex. Phycologia 47(5):487–497

    Article  Google Scholar 

  • Bai X, Sun C, Xie J, Song H, Zhu Q, Su Y, Qian H, Fu Z (2015) Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum. Environ Sci Pollut R 22(22):17499–17507. https://doi.org/10.1007/s11356-015-4923-7

    Article  CAS  Google Scholar 

  • Bancon-Montigny M, Gonzalez C, Delpoux S, Avenzac M, Spinelli S, Mhadhbi T, Mejri K, Sakka Hlaili A, Pringault O (2019) Seasonal changes of chemical contamination in coastal waters during sediment resuspension. Chemosphere 235:651–661. https://doi.org/10.1016/jchemosphere201906213

    Article  CAS  Google Scholar 

  • Bao VWW, Leung KMY, Qiu J-W, Lam MHW (2011) Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar Pollut Bull 62:1147–1151

    Article  CAS  Google Scholar 

  • Beers Jr RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  CAS  Google Scholar 

  • Ben Salem F, Said O, Duran R, Grunberger O (2017) First Survey of Agricultural Pesticides Used for Crops in Ichkeul Lake-Bizerte Lagoon Watershed (Tunisia). Environ Sci Ind J 13(6):156

    Google Scholar 

  • BĂ©rard A, Pelte T, Menthon E, Druart JC, Bourrain X (1998) Characterisation of phytoplankton from two limnic systems contaminated by a herbicidal photosynthetic inhibitor The PICT method (pollution-induced community tolerance): application and significance. Ann Limnol Int J Lim 34(3):269–282

    Article  Google Scholar 

  • BĂ©rard A, Leboulanger C, Pelte T (1999) Tolerance of Oscillatoria limnetica Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature. Arch Environ Contam Toxicol 37:472–479

    Article  Google Scholar 

  • BĂ©rard A, Dorigo U, Mercier I, Becker-van Slooten K, Grandjean D, Leboulanger C (2004) Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53:935–44. https://doi.org/10.1016/S0045-6535(03)00674-X

    Article  CAS  Google Scholar 

  • Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259–271. https://doi.org/10.1007/s10750-011-0786-1

    Article  CAS  Google Scholar 

  • Böger P (2003) Mode of action for chloroacetamides and functionally related compounds. J Pest Sci 28:324–329. https://doi.org/10.1584/jpestics.28.324

    Article  Google Scholar 

  • Busi R (2014) Resistance to herbicides inhibiting the biosynthesis of very long chain fatty acids. Pest Manag Sci 70(9):1378–1384. https://doi.org/10.1002/ps3746m

    Article  CAS  Google Scholar 

  • Carter A (2000) How pesticides get into water - And proposed reduction measures. Pestic Outlook 11:149–156. https://doi.org/10.1039/b006243j

    Article  Google Scholar 

  • Chalifour A, Arts MT, Kainz MJ, Juneau P (2014) Combined effect of temperature and bleaching herbicides on photosynthesis pigment and fatty acid composition of Chlamydomonas reinhardtii. Eur J Phycol 49(4):508–515

    Article  CAS  Google Scholar 

  • Chamsi O, Pinelli E, Faucon B, Perrault A, Lacroix L, Sánchez-PĂ©rez JM, Charcosset J-Y (2019) Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener. Ann Limnol Int J Lim 55 (3). https://doi.org/10.1051/limn/2019002

  • CoquillĂ© N, Jan G, Moreira A, Morin S (2014) Use of diatom motility features as endpoints of metolachlor toxicity. Aquat Toxicol 158:202–210. https://doi.org/10.1016/jaquatox201411021

    Article  Google Scholar 

  • CoquillĂ© N, MĂ©nard D, Rouxel J, Dupraz V, Melissa E, Pardon P, Budzinski H, Morin S, Parlanti E, Stachowski-Haberkorn S (2018) The influence of natural dissolved organic matter on herbicide toxicity to marine microalgae is species dependent. Aquat Toxicol 198:103–117. https://doi.org/10.1016/jaquatox201802019

    Article  Google Scholar 

  • De Souza R, Seibert D, Quesada H, Bassetti FJ, Fagundes-Klen M, Bergamasco R (2020) Occurrence impacts and general aspects of pesticides in surface water: A review. Process. Saf Environ Prot 135:22–37. https://doi.org/10.1016/j.psep201912035

    Article  Google Scholar 

  • Debenest T, Silvestre J, Coste M, Delmas F, Pinelli E (2008) Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities. Aquat Toxicol 88(1):84–94

    Article  Google Scholar 

  • Debenest T, Pinelli E, Coste M, Silvestre J, Mazzella N, Madigou C, Delmas F (2009) Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquat Toxicol 93:11–17

    Article  CAS  Google Scholar 

  • Debenest T, Silvestre J, Coste M, Pinelli E (2010) Effects of pesticides on freshwater diatoms. Rev Environ Contam Toxicol 203:87–103

    CAS  Google Scholar 

  • Demailly F, Elfeky I, Malbezin L, Le GuĂ©dard M, Eon M, Bessoule JJ, Feurtet-Mazel A, Delmas F, Mazzella N, Gonzalez P, Morin S (2019) Impact of diuron and S-metolachlor on the freshwater diatom Gomphonema gracile: Complementarity between fatty acid profiles and different kinds of ecotoxicological impact-endpoints. Sci Total 20(688):960–969. https://doi.org/10.1016/jscitotenv201906347

    Article  Google Scholar 

  • Dorigo U, Bourrain X, BĂ©rard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318:101–114. https://doi.org/10.1016/S0048-9697(03)00398-X

    Article  CAS  Google Scholar 

  • Ebenezer V, Ki J-S (2013) Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotox Environ Safe 92:129–134. https://doi.org/10.1016/jecoenv201303014i

    Article  CAS  Google Scholar 

  • Finizio A, Vighi M, Sandroni D (1997) Determination of N-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere 34:131–161. https://doi.org/10.1016/S0045-6535(96)00355-4

    Article  CAS  Google Scholar 

  • Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifouling biocides their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 15 85(3):184–191. https://doi.org/10.1016/jaquatox200709002Epub2007Sep6PMID:17942164

    Article  CAS  Google Scholar 

  • Gomes M, Juneau P (2017) Temperature and light modulation of herbicide toxicity on algal and cyanobacterial physiology. Front Environ Sci 5:50. https://doi.org/10.3389/fenvs201700050

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms I Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239. https://doi.org/10.1139/m62-029

    Article  CAS  Google Scholar 

  • Gundermann K, Wagner V, Mittag M, BĂĽchel C (2019) Fucoxanthin-chlorophyll protein complexes of the centric diatom Cyclotella Meneghiniana differ in Lhcx1 and Lhcx6_1 content. Plant Physiol 179(4):1779–1795. https://doi.org/10.1104/pp1801363Epub2019Feb7

    Article  CAS  Google Scholar 

  • Hashimoto K, Eguchi Y, Oishi H, Tazunoki Y, Tokuda M, Sánchez-Bayo F, Goka K, Hayasaka D (2019) Effects of a herbicide on paddy predatory insects depend on their microhabitat use and an insecticide application. Ecol Appl 29(6):01945. https://doi.org/10.1002/eap1945

    Article  Google Scholar 

  • Hii Y, Shia K, Chuah T-S, Hing LS (2009) Physiological responses of Chaetoceros sp. and Nannochloropsis sp. to short-term 2 4-D dimethylamine and endosulfan exposure. Aquat Ecosyst Health 12:375–389. https://doi.org/10.1080/14634980903347662

    Article  CAS  Google Scholar 

  • Hourmant A, Amara A, Pouline P, Durand G, Arzul G, Quiniou F (2009) Effect of bentazon on growth and physiological responses of marine diatom: Chaetoceros gracilis. Toxicol Mech Method 19:109–115. https://doi.org/10.1080/15376510802290892

    Article  CAS  Google Scholar 

  • Jiang S, Penner MH (2015) Selective oxidation of enzyme extracts for improved quantification of peroxidase activity. Anal Biochem 1(476):20–25. https://doi.org/10.1016/jab201501017Epub2015Jan29PMID:25640588

    Article  Google Scholar 

  • Juneau P, Qiu B, Deblois C (2007) Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect. Review Toxicol Environ Chem 89:609–625. https://doi.org/10.1080/02772240701561569

    Article  CAS  Google Scholar 

  • Kalopesa E, Nikolaidis G, Menkissoglu-Spiroudi U (2008) Atrazine effects on growth of the diatom Rhizosolenia setigera (Ehrenberg) brightwell. Fresenius Environ Bull 17:1932–1937

    CAS  Google Scholar 

  • Kargar M, Ghorbani R, Rashed M, Mohammad H, Rastgoo M (2019) Chlorophyll Fluorescence - a Tool for Quick Identification of Accase and ALS Inhibitor Herbicides Performance Planta Daninha 37. https://doi.org/10.1590/s0100-83582019370100132

  • Koedooder C, Stock W, Willems A, Mangelinckx S, De Troch M, Vyverman W, Sabbe K (2019) Diatom-Bacteria Interactions Modulate the Composition and Productivity of Benthic Diatom Biofilms Front Microbiol. 10.103389/fmicb201901255

  • Kumar K, Young-Seok H, Kyung-Sil C, Jeong-Ae K, Taejun H (2009) Chlorophyll fluorescence based copper toxicity assessment of two algal species. Toxicol Environ Health Sci 1(1). https://doi.org/10.1007/BF03216459

  • Lam C, Kurobe T, Lehman P, Berg M, Hammock B, Stillway M, Pandey P, Teh S (2020) Toxicity of herbicides to cyanobacteria and phytoplankton species of the San Francisco Estuary and Sacramento-San Joaquin River Delta California USA. J Environ Sci Health Part A 55:1–12. https://doi.org/10.1080/1093452920191672458

    Article  Google Scholar 

  • Larras F, Bouchez A, Rimet F, Montuelle B (2012) Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms. Plos One 8:1–9

    Google Scholar 

  • Larras F, Lambert A-S, Pesce S, Rimet F, Bouchez A, Montuelle B (2013) The effect of temperature and a herbicide mixture on freshwater periphytic algae. Ecotoxicol Environ Safe 98:162–170. https://doi.org/10.1016/jecoenv201309007

    Article  CAS  Google Scholar 

  • Larras F, Keck F, Montuelle B, Rimet F, Bouchez A (2014) Linking diatom sensitivity to herbicides to phylogeny: A step forward for biomonitoring? Environ Sci Technol 48(3):1921–1930. https://doi.org/10.1021/es4045105

    Article  CAS  Google Scholar 

  • Leboulanger C, Rimet F, Lacotte M, BĂ©rard A (2001) Effect of atrazine and nicosulfuron on freshwater microalgae. Environ Int 26(3):131–135. https://doi.org/10.1016/S0160-4120(00)00100-8

    Article  CAS  Google Scholar 

  • Lee SD, Joo H, Lee J (2014) Critical criteria for identification of the genus Chaetoceros (Bacillariophyta) based on setae ultrastructure II Subgenus Hyalochaete. Phycologia 53:614–638. https://doi.org/10.2216/14-51R21

    Article  Google Scholar 

  • Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: Role of polyunsaturated aldehydes and precursors. New Phytol 184:794–805. https://doi.org/10.1111/j1469-8137200903033x

    Article  CAS  Google Scholar 

  • Legrand H, Herlory O, Jean-marc G, Gerard B, Richard P (2006) Inhibition of microphytobenthic photosynthesis by the herbicides atrazine and diuron. Cah Biol Mar 47(1):39–45

    Google Scholar 

  • Lima IS, Baumeier NC, Rosa RT, Campelo PM, Rosa EA (2014) Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa. Braz J Microbiol 45(3):971–975. https://doi.org/10.1590/s1517-83822014000300029

    Article  CAS  Google Scholar 

  • LĂłpez-CortĂ©s D, Nuñez-Vazquez E, Band-Schmidt C, Gárate-Lizárraga I, Hernandez F, Bustillos J (2015) Mass fish die-off during a diatom bloom in the BahĂ­a de La Paz Gulf of California. Hidrobiologica 25:39–48

    Google Scholar 

  • Loureiro S, Jauzein C, GarcĂ©s E, Collos Y, Camp J, VaquĂ© D (2009) The significance of organic nutrients to Pseudo-nitzschia delicatissima (Bacillariophyceae) nutrition. J Plankton Res 31(4):399–410

    Article  CAS  Google Scholar 

  • LĂĽrling M (2021) Grazing resistance in phytoplankton. Hydrobiologia 848:237–249. https://doi.org/10.1007/s10750-020-04370-3

    Article  Google Scholar 

  • Lyczkowski ER, Karp-Boss L (2014) Allelopathic effects of Alexandrium fundyense (Dinophyceae) on Thalassiosira cf gravida (Bacillariophyceae): A matter of size. J Phycol 50(2):376–387. https://doi.org/10.1111/jpy12172Epub2014Mar15PMID:26988194

    Article  Google Scholar 

  • Macedo RS, Lombardi AT, Omachi CY, Rörig LR (2008) Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. Toxicol In Vitro 22(3):716–22. https://doi.org/10.1016/jtiv200711012Epub2007NovPMID:18180139

    Article  CAS  Google Scholar 

  • Magnusson M, Heimann K, Negri A (2008) Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar Pollut Bull 56:1545–1552. https://doi.org/10.1016/jmarpolbul200805023

    Article  CAS  Google Scholar 

  • Manimaran K, Panneerselvam K, Ashokkumar S, Prabu VA, Sampathkumar P (2012) Effect of copper on growth and enzyme activities of marine diatom Odontella mobiliensis. Bull Environ Contamin Toxicol 88:30–37. https://doi.org/10.1007/s00128-011-0427-4

    Article  CAS  Google Scholar 

  • Mansano A, Moreira R, Dornfeld H, Freitas E, Vieira E, Sarmento H, Rocha O, Seleghim M (2017) Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. Ecotox Environ Safe 142:312–321. https://doi.org/10.1016/jecoenv201704024

    Article  CAS  Google Scholar 

  • Maronić SD, Ivna Ĺ , Horvatić J, Pfeiffer T, Stević F, Waeg G, Jaganjac M (2018) S-metolachlor promotes oxidative stress in green microalga Parachlorella kessleri - A potential environmental and health risk for higher organisms. Sci Total Environ 637-638:41–49. https://doi.org/10.1016/jscitotenv201804433

    Article  Google Scholar 

  • Mathur S, Allakhverdiev S, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29. https://doi.org/10.1016/jbbabio201009001

    Article  CAS  Google Scholar 

  • Meddeb M, Niquil N, Grami B, Mejri K, Haraldsson M, Chaalali A, Pringault O, Sakka Hlaili A (2019) A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecol Indic 104:67–85. https://doi.org/10.1016/jecolind201904077

    Article  Google Scholar 

  • Melliti Ben Garali S, Sahraoui I, de la Iglesia P, Chalghaf M, Diogène J, Ksouri J, Sakka Hlaili A (2016) Effects of nitrogen supply on Pseudo-nitzschia calliantha and Pseudo-nitzschia cf seriata: field and laboratory experiments. Ecotoxicol 25(6):1211–1225. https://doi.org/10.1007/s10646-016-1675-1Epub2016May25PMID:27225994

    Article  CAS  Google Scholar 

  • Mengelt C, PrĂ©zelin B (2005) A potential novel link between organic nitrogen loading and Pseudo-nitzschia spp blooms california and the world ocean - Proceedings of the Conference https://doi.org/10.1061/40761(175)78

  • Mhadhbi T, Pringault O, Nouri H, Spinelli S, Hamouda B, Gonzalez C (2019) Evaluating polar pesticide pollution with a combined approach: a survey of agricultural practices and POCIS passive samplers in a Tunisian lagoon watershed. Environ Sci Pollut Res 26(1):342–361. https://doi.org/10.1007/s11356-018-3552-3

    Article  CAS  Google Scholar 

  • Mine A, Shooichi M (1975) Mode of action of bentazon: Effect on photosynthesis. Pest Biochem Physiol 5(5):444–450. https://doi.org/10.1016/0048-3575(75)90017-6

    Article  CAS  Google Scholar 

  • Mohr MP (2019) Defense mechanisms in phytoplankton: traits and trade-offs Technical University of Denmark 99

  • Moncada A (2005) Environmental fate of diuron Environmental Monitoring Branch Department of Pesticide Regulation (http://www.cdpr.ca.gov/docs/empm/pubs/fatememo/diuron.pdf)

  • Moustakas M, Malea P, Zafeirakoglou A, Sperdouli I (2016) Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. Pestic Biochem Physiol 126:28–34. https://doi.org/10.1016/jpestbp201507003Epub2015Jul20PMID:26778431

    Article  CAS  Google Scholar 

  • Mudge J, Houlahan J (2019) Wetland macrophyte community response to and recovery from direct application of glyphosate-based herbicides. Ecotoxicol Environ Safe 183:109475. https://doi.org/10.1016/jecoenv2019109475

    Article  CAS  Google Scholar 

  • Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenicsilica in the ocean: revised global estimates comparison withregional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–72

    Article  CAS  Google Scholar 

  • Nguyen DN, Caruso A, Thi TL, Bui T, Schoefs B, GĂ©rard T, Manceau A (2012) Zinc affects differently growth photosynthesis antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Sci World J 2012:982957. https://doi.org/10.1100/2012/982957

    Article  CAS  Google Scholar 

  • Nödler K, Voutsa D, Licha T (2014) Polarorganic micropollutants in the coastal environment of different marine systems. Mar Pollut Bull 85:50–59. https://doi.org/10.1016/j.marpolbul.2014.06.024

    Article  CAS  Google Scholar 

  • Ortiz-Hernandez L, Enrique S-S, CastrejĂłn-GodĂ­nez M, Dantan E, Popoca E (2013) Mechanisms and strategies for pesticide biodegradation: Opportunity for waste soils and water cleaning. Revista Internacional de Contaminacion Ambiental 29:85–104

    Google Scholar 

  • Pandey L (2017) The use of diatoms in ecotoxicology and bioassessment: Insights advances and challenges. Water Res 115:1–20

    Article  Google Scholar 

  • Pandey L, Sharma YC, Park J, Choi S, Lee H, Lyu J, Han T (2020) Evaluating features of periphytic diatom communities as biomonitoring tools in fresh brackish and marine waters 194:67-77 https://doi.org/10.1016/jaquatox201711003

  • Parsons TR, Maita Y, Lalli CM (1984) A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, p 173

    Google Scholar 

  • PĂ©rès F, Florin D, Grollier T, Feurtet-Mazel A, Coste M, Ribeyre F, Michalet R, Boudou A (1996) Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosm. Environ Pollut 94:141–52. https://doi.org/10.1016/S0269-7491(96)00080-2

    Article  Google Scholar 

  • Pesce S, Bouchez A, Montuelle B (2011) Effects of organic herbicides on phototrophic microbial communities in freshwater ecosystems. Rev Environ Contamin Toxicol 214:87–124. https://doi.org/10.1007/978-1-4614-0668-6_5

    Article  CAS  Google Scholar 

  • Pringault O, Lafabrie C, Avezac M, Bancon-Montigny C, Carre C, Chalghaf M, Delpoux S, Duvivier A, Elbaz-Poulichet F, Gonzalez C, Got P, Leboulanger C, Spinelli S, Sakka Hlaili A, Bouvy M (2016) Consequences of contaminant mixture on the dynamics and functional diversity of bacterioplankton in a southwestern Mediterranean coastal ecosystem. Chemosphere 144:1060–1073. https://doi.org/10.1016/jchemosphere201509093

    Article  CAS  Google Scholar 

  • Ramezani S, Saharkhiz M, Ramezani F, Mohammad Hossein F (2008) Use of essential oils as bioherbicides. J Essent Oil-Bear. Plants 11:319–327. https://doi.org/10.1080/0972060X200810643636

    Article  Google Scholar 

  • Ricart M, BarcelĂł D, Geiszinger A, Guasch H, Alda MLD, RomanĂ­ AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392–1401

    Article  CAS  Google Scholar 

  • Roubeix V, Mazzella N, MĂ©chin B, Coste M, Delmas F (2011) Impact of the herbicide metolachlor on river periphytic diatoms: Experimental comparison of descriptors at different biological organization levels. Intern J Limnol 47:239–249. https://doi.org/10.1051/limn/2011009

    Article  Google Scholar 

  • Sahraoui I, Sakka Hlaili A, Hadj Mabrouk H, LĂ©ger C, Bates SS (2009) Blooms of the diatom genus Pseudo-nitzschia H Peragallo in Bizerte lagoon (Tunisia SW Mediterranean). Diatom Res 24(1):175–190. https://doi.org/10.1080/0269249X20099705789

    Article  Google Scholar 

  • Sahraoui I, Grami B, Bates SS, Bouchouicha D, Chikhaoui MA, Mabrouk HH, Hlaili AS (2012) Response of potentially toxic Pseudo-nitzschia (Bacillariophyceae) populations and domoic acid to environmental conditions in a eutrophied SW Mediterranean coastal lagoon (Tunisia). Estuar Coast 102:95–104. https://doi.org/10.1016/jecss201203018

    Article  Google Scholar 

  • Sakka Hlaili A, Niquil N, Legendre L (2014) Planktonic food webs revisited: Reanalysis of results from the linear inverse approach. Prog Oceanogr 120:216–229. https://doi.org/10.1016/jpocean201309003

    Article  Google Scholar 

  • Sakka Hlaili A, Sahraoui I, Bouchouicha-Smida D, Melliti Garali S, Ksouri J, Chalghaf M, Bates SS, Lundholm N, Kooistra W, de La Iglesia P, Diogène J (2016) Toxic and potentially toxic diatom blooms in Tunisian (SW Mediterranean) waters: Review of ten years of investigations. Adv Environ Res 48:51–69. Nova Science Publishers 572 Inc (Daniels J A editor)

    Google Scholar 

  • SchabhĂĽttl S, Peter H, Weigelhofer G, Hein T, Weigert A, Striebel M (2012) Temperature and species richness effects in phytoplankton communities. Oecologia 171(2):527–536. https://doi.org/10.1007/s00442-012-2419-4

    Article  Google Scholar 

  • Schmitt M, Altenburger R (2005) Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24:304–312. https://doi.org/10.1897/03-647.1

    Article  Google Scholar 

  • Schuler LJ, Rand GM (2008) Aquatic risk assessment of herbicides in freshwater ecosystems of South Florida. Arch Environ Contam Toxicol 54(4):571–83. https://doi.org/10.1007/s00244-007-9085-2Epub2007Dec19PMID:18094912

    Article  CAS  Google Scholar 

  • Sherwani S I, Arif I A, Khan H A (2015). Modes of Action of Different Classes of Herbicides. https://doi.org/10.5772/61779.

  • Smayda TJ (2006) Autecology of bloom forming microalgae: Extrapolation of laboratory results to field populations and the Redfield - Braarud debate revisited p 215-270 In D V Subba Rao [ed] Algal Cultures Analogues of Blooms and Application Science Publishers Enfield NH

  • Smedbol É, Lucotte M, Labrecque M, Lepage L, Juneau P (2017) Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®). Aquat Toxicol 192:265–273. https://doi.org/10.1016/jaquatox201709021Epub2017Sep28PMID:28992597

    Article  CAS  Google Scholar 

  • Stachowski-Haberkorn S, JĂ©rĂ´me M, Rouxel J, Khelifi C, RincĂ© M, Burgeot T (2013) Multigenerational exposure of the microalga Tetraselmis suecica to diuron leads to spontaneous long-term strain adaptation. Aquat Toxicol 140:380–388

    Article  Google Scholar 

  • Stevenson R, Pan Y (2010) Assessing environmental conditions in rivers and streams with diatoms The Diatoms: Applications for the Environmental and Earth Sciences Second Edition https://doi.org/10.1017/CBO9780511763175005

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: The JIP-Test. In: Mathis P Ed photosynthesis: from light to biosphere. KAP Press, Dordrecht, p 977–980. https://doi.org/10.1007/978-94-009-0173-5_1142

    Chapter  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (1999) Screening the vitality and photosynthetic activity of plants by fluorescent transient. In: Behl RK, Punia MS, Lather BPS (eds) Crop Improvement for Food Security. SSARM, Hisar India, p 72–115

    Google Scholar 

  • Tang J, Hoagland KD, Siegfried BD (1997) Differential toxicity of atrazine to selected freshwater algae. Bull Environ Contamin Toxicol 59:631–637

    Article  CAS  Google Scholar 

  • Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: Inputs occurrence and environmental fate. Sci Tot Environ 293:117–127

    Article  CAS  Google Scholar 

  • Thomas M, Flores F, Kaserzon S, Reeks T, Negri A (2020) Toxicity of the herbicides diuron propazine tebuthiuron and haloxyfop to the diatom Chaetoceros muelleri. Sci Reports 10(1):19592. https://doi.org/10.1038/s41598-020-76363-0

    Article  CAS  Google Scholar 

  • Thornton D (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49:20–46. https://doi.org/10.1080/096702622013875596

    Article  CAS  Google Scholar 

  • Thurman E, Meyer M (1996) Herbicide metabolites in surface water and groundwater: Introduction and overview. ACS Symposium Series 630:x1–15. https://doi.org/10.1021/bk-1996-0630.ch001.

    Article  Google Scholar 

  • Tissier C, Morvan C, BocquenĂ© G, Grossel H, James A, Marchand M (2005) Les substances prioritaires de la Directive cadre sur l’eau (DCE) Fiches de synthèse Rapport IFREMER (http://www.ifremer.fr/delpc/pdf/RAPPORT_FICHES33_SUBSTANCES.pdf)

  • Wood R, Mitrovic S, Kefford B (2014) Determining the relative sensitivity of benthic diatoms to atrazine using rapid toxicity testing: A novel method. Sci Tot Environ 485-486:421–427. https://doi.org/10.1016/j.scitotenv.2014.03.115

    Article  CAS  Google Scholar 

  • Wood R, Mitrovic S, Lim R, Kefford B (2016) How benthic diatoms within natural communities respond to eight common herbicides with different modes of action. Sci Tot Environ 557-558:636–643. https://doi.org/10.1016/jscitotenv201603142

    Article  CAS  Google Scholar 

  • Wood R, Mitrovic S, Lim R, Warne M, Dunlop J, Kefford B (2019) Benthic diatoms as indicators of herbicide toxicity in rivers - A new species at Risk (SPEAR herbicides) index. Ecol Indic 99:203–213. https://doi.org/10.1016/jecolind201812035

    Article  CAS  Google Scholar 

  • Yang X, Guschina I, Hurst S, Wood S, Langford M, Hawkes T, Harwood J (2010) The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Manage Sci 66:794–800. https://doi.org/10.1002/ps.1944

    Article  CAS  Google Scholar 

  • Yang L, Li H, Zhang Y, Jiao N (2019) Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Environ Int 133(Pt A):105175. https://doi.org/10.1016/jenvint2019105175

    Article  CAS  Google Scholar 

  • Zhang Y, Wang J, Tan L (2014) The study on the influencing factors of Chaetoceros curvisetus allelopathic effect on Skeletonema costatum and the primary research on the properties of Chaetoceros curvisetus allelochemical. Acta Oceanol Sinica 36:123–129

    CAS  Google Scholar 

  • Rioboo C, González O, Herrero C, Cid A(2002) Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat Toxicol 59:225–235. https://doi.org/10.1016/S0166-445X(01)00255-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by IRD through the Laboratoire Mixte International (LMI) COSYS-Med (Contaminants et Ecosystèmes Sud Méditerranéens).

Author contributions

IS, SMB, ZC, and ASH contributed to the study conception and design. Laboratory analyses were performed by IS and ZC and CG. The first draft of the paper was written by IS. ASH and OP commented on previous versions of the paper. All authors read and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inès Sahraoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraoui, I., Melliti Ben Garali, S., Chakroun, Z. et al. Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens. Ecotoxicology 31, 700–713 (2022). https://doi.org/10.1007/s10646-022-02535-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02535-5

Keywords

Navigation