Skip to main content
Log in

Toxicity of fipronil to Folsomia candida in contrasting tropical soils and soil moisture contents: effects on the reproduction and growth

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study assessed the influence of three tropical soil types and soil moisture content on the toxicity and risk of the insecticide fipronil to collembolans Folsomia candida. Chronic toxicity tests were performed in a Tropical Artificial Soil (TAS), an Oxisol and an Entisol spiked with increasing concentrations of fipronil to assess the effects on the reproduction and growth of the species. The soil moisture contents were kept at 60% (standard condition) and 30 or 45% (water restriction) of their water holding capacity (WHC). The toxicity of fipronil on collembolans reproduction was about three times higher in Entisol compared to TAS or Oxisol. Higher toxicities were also found in the drier TAS (EC50 30%WHC = 0.20 vs EC50 60%WHC = 0.70 mg kg−1) and Oxisol (EC50 45%WHC = 0.27 vs EC50 60%WHC = 0.54 mg kg−1), while in Entisol lower impacts were found in the drier samples (EC50 30%WHC = 0.41 vs EC50 60%WHC = 0.24 mg kg−1). For all tested soils, the size of generated collembolans was reduced by the fipronil concentrations, regardless of soil moisture. However, the drier condition increased the effect on the growth in TAS and Entisol for some concentrations. A significant risk of exposure was found in TAS and Oxisol at drier conditions and, for Entisol, regardless of the soil moisture. The toxic effects and risk of fipronil on collembolans were higher in the natural sandy soil. The soil moisture content increase or decrease the toxicity of the insecticide for collembolans, depending on soil type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available and should be requested by e-mail.

Code availability

ImageJ, RRID:SCR_003070; STATISTICA, RRID:SCR_014213; SCAPE, RRID: Not available.

References

  • Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682. https://doi.org/10.1016/j.chemosphere.2012.11.046

    Article  CAS  Google Scholar 

  • Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2014) Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotoxicol Environ Saf 105:65–71. https://doi.org/10.1016/j.ecoenv.2014.04.010

    Article  CAS  Google Scholar 

  • Alves PRL, Bandeira FO, Presotto R, Giraldi M, Segat JC, Cardoso EJBN, Baretta D (2019) Ecotoxicological assessment of Fluazuron: effects on Folsomia candida and Eisenia andrei. Environ Sci Pollut Res 26:5842–5850. https://doi.org/10.1007/s11356-018-4022-7

    Article  CAS  Google Scholar 

  • Amorim MJB, Römbke J, Soares AMVM (2005) Avoidance behaviour of Enchytraeus albidus: effects of Benomyl, Carbendazim, phenmedipham and different soil types. Chemosphere 59:501–510. https://doi.org/10.1016/j.chemosphere.2005.01.057

    Article  CAS  Google Scholar 

  • Bandeira FO, Alves PRL, Hennig TB, Schiehl A, Cardoso EJBN, Baretta D (2019) Toxicity of imidacloprid to the earthworm Eisenia andrei and collembolan Folsomia candida in three contrasting tropical soils. J Soils Sediments 20:1997–2007. https://doi.org/10.1007/s11368-019-02538-6

    Article  CAS  Google Scholar 

  • Bandeira FO, Alves PRL, Hennig TB, Toniolo T, Natal-da-Luz T, Baretta D (2020) Effect of temperature on the toxicity of imidacloprid to Eisenia andrei and Folsomia candida in tropical soils. Environ Pollut 267:115565. https://doi.org/10.1016/j.envpol.2020.115565

  • Bandow C, Coors A, Karau N, Römbke J (2014a) Interactive effects of lambda-cyhalothrin, soil moisture and temperature on Folsomia candida and Sinella curviseta (Collembola). Environ Toxicol Chem 33:654–661. https://doi.org/10.1002/etc.2479

    Article  CAS  Google Scholar 

  • Bandow C, Karau N, Römbke J (2014b) Interactive effects of pyrimethanil, soil moisture and temperature on Folsomia candida and Sinella curviseta (Collembola). Appl Soil Ecol 81:22–29. https://doi.org/10.1016/j.apsoil.2014.04.010

    Article  Google Scholar 

  • Bandow C, Ng EL, Schmelz RM, Sousa JP, Römbke J (2016) A TME study with the fungicide pyrimethanil combined with different moisture regimes: effects on enchytraeids. Ecotoxicology 25:213–224. https://doi.org/10.1007/s10646-015-1581-y

    Article  CAS  Google Scholar 

  • Bobé A, Coste CM, Cooper JF (1997) Factors Influencing the Adsorption of Fipronil on Soils. J Agric Food Chem 45:4861–4865. https://doi.org/10.1021/jf970362z

    Article  Google Scholar 

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. https://doi.org/10.1007/s11356-014-3332-7

    Article  CAS  Google Scholar 

  • Brodeur JC, Sanchez M, Castro L, Rojas DE, Cristos D, Damonte MJ, Poliserpi MB, D’Andrea MF, Andriulo AE (2017) Accumulation of current-use pesticides, cholinesterase inhibition and reduced body condition in juvenile one-sided livebearer fish (Jenynsia multidentata) from the agricultural Pampa region of Argentina. Chemosphere 185:36–46. https://doi.org/10.1016/j.chemosphere.2017.06.129

    Article  CAS  Google Scholar 

  • Bursell E (1970) An introduction to insect physiology. Academic Press, London, UK, p 276

    Google Scholar 

  • Carniel LSC, Niemeyer JC, Oliveira Filho LCI, Alexandre D, Gebler L, Klauberg-Filho O (2019) The fungicide mancozeb affects soil invertebrates in two subtropical Brazilian soils. Chemosphere 232:180–185. https://doi.org/10.1016/j.chemosphere.2019.05.179

    Article  CAS  Google Scholar 

  • Cary TL, Chandler GT, Volz DC, Walse SS, Ferry JL (2004) Phenylpyrazole Insecticide Fipronil Induces Male Infertility in the Estuarine Meiobenthic Crustacean Amphiascus tenuiremis. Environ Sci Technol 38:522–528. https://doi.org/10.1021/es034494m

    Article  CAS  Google Scholar 

  • Chelinho S, Domene X, Campana P, Andrés P, Römbke J, Sousa JP (2014) Toxicity of phenmedipham and carbendazim to Enchytraeus crypticus and Eisenia andrei (Oligochaeta) in Mediterranean soils. J Soils Sediments 14:584–599. https://doi.org/10.1007/s11368-013-0818-8

    Article  CAS  Google Scholar 

  • Coleman DC, Crossley DA, Hendrix PF (2004) Fundamentals of Soil Ecology, 2nd ed. Elsevier Inc, Athens, Georgia, p 502

    Google Scholar 

  • Crouau Y, Chenon P, Gisclard C (1999) The use of Folsomia candida (Collembola, Isotomidae) for the bioassay of xenobiotic substances and soil pollutants. Appl Soil Ecol 12:103–111. https://doi.org/10.1016/S0929-1393(99)00002-5

    Article  Google Scholar 

  • Culik MP, Zeppelini FD (2003) Diversity and distribution of Collembola (Arthropoda: Hexapoda) of Brazil. Biodivers Conserv 12:1119–1143. https://doi.org/10.1023/A:1023069912619

    Article  Google Scholar 

  • Daam MA, Chelinho S, Niemeyer JC, Owojori OJ, De Silva PMCS, Sousa JP, van Gestel CAM, Römbke J (2019) Environmental risk assessment of pesticides in tropical terrestrial ecosystems: test procedures, current status and future perspectives. Ecotoxicol Environ Saf 181:534–547. https://doi.org/10.1016/j.ecoenv.2019.06.038

    Article  CAS  Google Scholar 

  • Da Silva KMD, Rezende LCSH, Bergamasco R, Da Silva CA, Gonçalves DS (2012) Caracterização Físico - Química Da Fibra De Coco Verde Para a Adsorção De Metais Pesados Em Efluente De Indústria De Tintas. Engevista 15:43. https://doi.org/10.22409/engevista.v15i1.387

    Article  Google Scholar 

  • Domene X, Colón J, Uras MV, Izquierdo R, Àvila A, Alcañiz JM (2010) Role of soil properties in sewage sludge toxicity to soil collembolans. Soil Biol Biochem 42:1982–1990. https://doi.org/10.1016/j.soilbio.2010.07.019

    Article  CAS  Google Scholar 

  • Domene X, Chelinho S, Campana P, Natal-da-Luz T, Alcañiz JM, Andrés P, Römbke J, Sousa JP (2011) Influence of soil properties on the performance of Folsomia candida: implications for its use in soil ecotoxicology testing. Environ Toxicol Chem 30:1497–1505. https://doi.org/10.1002/etc.533

    Article  CAS  Google Scholar 

  • Domene X, Römbke J, Chelinho S, Sousa JP, Campana P, Alcañiz JM (2012) Applying a GLM-based approach to model the influence of soil properties on the toxicity of phenmedipham to Folsomia candida. J. Soils Sediments 12:888–899. https://doi.org/10.1007/s11368-012-0502-4

    Article  CAS  Google Scholar 

  • EC - European Commission (2002) Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC (SANCO/10329/2002) rev.2 final, 17.10.2002, p. 1 - 39

  • Edney EB (1977) Water balance in land arthropods. Springer-Verlag, Berlin, Germany, p 282

    Book  Google Scholar 

  • EFSA - European Food Safety Authority (2006) Conclusion regarding the peer review of the pesticide risk assessment of the active substance metazachlor. EFSA J 6:1–110. https://doi.org/10.2903/j.efsa.2008.145r

    Article  Google Scholar 

  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (1988) Recomendações técnicas para o cultivo da soja. Circular técnica 16. Unidade de execução de pesquisa de âmbito estadual de Dourados, MS. Dourados

    Google Scholar 

  • EMBRAPA (2006) Ata da XXVII Reunião de Pesquisa de Soja da Região Central do Brasil. Embrapa Soja, Londrina, Brazil.lSSN 1516-781X: n. 265

  • Environmental Canada (2007) Guidance Document on Statistical Methods for Environmental Toxicity Test. Environmental Protection Series, EPS 1/RM/46, 2005 with 2007 updates. Environmental Canada, Ottawa

    Google Scholar 

  • EPPO - European and Mediterranean Plant Protection Organization (2003) Environmental risk assessment scheme for plant protection products. Chapter 4: Soil. OEPP EPP0 Bull 33:151–162

    Article  Google Scholar 

  • ESCAPE (2013) ESCAPE 2.0v: Estimation of soil concentrations after pesticide applications. Fraunhofer IME, Aachen, Germany

    Google Scholar 

  • Fishel F (2003) Pesticides and the Environment. Agricultural MU Guide (Insects and Diseases), University of Missouri, Columbia, United States of America

  • Gaertner K, Chandler GT, Quattro J, Ferguson PL, Sabo-Attwood T (2012) Identification and expression of the ecdysone receptor in the harpacticoid copepod, Amphiascus tenuiremis, in response to fipronil. Ecotoxicol Environ Saf 76:39–45. https://doi.org/10.1016/j.ecoenv.2011.09.008

    Article  CAS  Google Scholar 

  • Garcia MVB (2004) Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. Ecology and development series, vol. 19. Doctoral thesis, University of Bonn, Bonn, Germany

  • Gebrehiwot WH, Erkmen C, Uslu B (2019) A novel HPLC-DAD method with dilute-and-shoot sample preparation technique for the determination of buprofezin, dinobuton and chlorothalonil in food, environmental and biological samples. J IAEAC 99:1–15. https://doi.org/10.1080/03067319.2019.1702169

    Article  CAS  Google Scholar 

  • Guimarães B, Maria VL, Römbke J, Amorim MJB (2019) Exposure of Folsomia candida (Willem 1902) to teflubenzuron over three generations – Increase of toxicity in the third generation. Appl Soil Ecol 134:8–14. https://doi.org/10.1016/j.apsoil.2018.10.003

    Article  Google Scholar 

  • Gunasekara A, Truong T, Goh KS, Spurlock F, Tjeerdema RR (2007) Environmental fate and toxicology of fipronil. J Pestic Sci 32(3):189–199. https://doi.org/10.1584/jpestics.R07-02

    Article  CAS  Google Scholar 

  • Harris CR (1964) Influence of soil type and soil moisture on the toxicity of insecticides in soils to insects. Nature 202:724

    Article  CAS  Google Scholar 

  • Hennig TB, Bandeira FO, Dalpasquale AJ, Cardoso EJBN, Baretta D, Alves PRL (2020) Toxicity of imidacloprid to collembolans in two tropical soils under different soil moisture. J Environ Qual 49:1491-1501. https://doi.org/10.1002/jeq2.20143

  • Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28:175–216

    Article  Google Scholar 

  • Højer R, Bayley M, Damgaard CF, Holmstrup M (2001) Stress synergy between drought and a common environmental contaminant: Studies with the collembolan Folsomia candida. Glob Chang Biol 7:485–494. https://doi.org/10.1046/j.1365-2486.2001.00417.x

    Article  Google Scholar 

  • IBAMA - Instituto brasileiro do meio ambiente e dos recursos naturais renováveis - IBAMA (1996) Normative Ordinance No. 84, October 15th, 1996. Establish Procedures to Be Adopted in the Brazilian Institute of Environment and Renewable Natural Resources e IBAMA, for Registration Purposes and for Assessment of the Potential Environmental Hazard (PPA) of Pesticides, vol. 203. Union Official Journal No, p. 21358, 1996. Brasília, Brazil (in Portuguese)

  • INMETRO - Instituto Nacional de Metrologia, Qualidade e Tecnologia (2020) Orientações sobre Validação de Métodos Analíticos: DOQ-CGCRE-008. Rev. 09 de jun 2020. Brasília, Brazil, p. 1 - 30. Available at: https://www.inmetro.gov.br/Sidoq/pesquisa_link.asp?seq_tipo_documento=5&cod_uo_numeracao=00774&num_documento=008. Accessed 06 August 2021.

  • IPCC - Intergovernmental Panel on Climate Change (2014) In: Pachauri, R.K., Meyer, L.A. (eds), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team]. IPCC, Geneva, Switzerland

  • ISO - International Organization for Standardization (2014) Soil quality: Inhibition of reproduction of Collembola (Folsomiacandida) by soil contaminants. ISO, Geneva, Switzerland

  • Jackson D, Cornell CB, Luukinen B, Buhl K, Stone D (2009) Fipronil Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services, Oregon, United States of America

  • Jänsch S, Amorim MJ, Römbke J (2005) Identification of the ecological requirements of important terrestrial ecotoxicological test species. Environ Rev 13:51–83. https://doi.org/10.1139/a05-007

    Article  Google Scholar 

  • Jegede OO, Owojori OJ, Römbke J (2017) Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol Environ Saf 140:214–221. https://doi.org/10.1016/j.ecoenv.2017.02.046

    Article  CAS  Google Scholar 

  • Li M, Li P, Wang L, Feng M, Han L (2015) Determination and dissipation of fipronil and its metabolites in peanut and soil. J Agric Food Chem 63:4435–4443. https://doi.org/10.1021/jf5054589

    Article  CAS  Google Scholar 

  • Lima MPR, Soares AMVM, Loureiro S (2011) Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios. Environ Pollut 159:1844–1851. https://doi.org/10.1016/j.envpol.2011.03.029

    Article  CAS  Google Scholar 

  • Maccari AP, Baretta D, Paiano D, Leston S, Freitas A, Ramos F, Sousa JP, Klauberg-Filho O (2016) Ecotoxicological effects of pig manure on Folsomia candida in subtropical Brazilian soils. J Hazard Mater 314:113–120. https://doi.org/10.1016/j.jhazmat.2016.04.013

    Article  CAS  Google Scholar 

  • Mandal K, Singh B (2013) Persistence of fipronil and its metabolites in sandy loam and clay loam soils under laboratory conditions. Chemosphere 91:1596–1603. https://doi.org/10.1016/j.chemosphere.2012.12.054

    Article  CAS  Google Scholar 

  • Masutti CSM, Mermut AR (2007) Degradation of fipronil under laboratory conditions in a tropical soil from sirinhaém Pernambuco, Brazil. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 42:33–43. https://doi.org/10.1080/03601230601017981

    Article  CAS  Google Scholar 

  • Mohapatra S, Deepa M, Rashmi N, Jagdish GK, Kumar S, Prakash GS (2010) Fate of Fipronil and its Metabolites in/on Grape Leaves, Berries and Soil Under Semi Arid Tropical Climatic Conditions. Bull Environ Contam Toxicol 84:587–591. https://doi.org/10.1007/s00128-010-9965-4

    Article  CAS  Google Scholar 

  • Niemeyer JC, Carniel LSC, de Santo FB, Silva M, Klauberg-Filho O (2018) Boric acid as reference substance for ecotoxicity tests in tropical artificial soil. Ecotoxicology 27:395–401. https://doi.org/10.1007/s10646-018-1915-7

    Article  CAS  Google Scholar 

  • Ogungbemi AO, Van Gestel CAM (2018) Extrapolation of imidacloprid toxicity between soils by exposing Folsomia candida in soil pore water. Ecotoxicology 27:1107–1115. https://doi.org/10.1007/s10646-018-1965-x

    Article  CAS  Google Scholar 

  • PBMC (2014) Base científica das mudanças climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas [Ambrizzi, T., Araujo, M. (eds.)]. COPPE. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, p 464

    Google Scholar 

  • Peijnenburg W, Capri E, Kula C, Liess M, Luttik R, Montforts M (2012) Technology Evaluation of Exposure Metrics for Effect Assessment of Soil Invertebrates. Crit Rev Env Sci Tec 42:17, 1862-1893. https://doi.org/10.1080/10643389.2011.574100

  • Ribeiro S, Sousa JP, Nogueira AJA (2001) Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol Environ Saf 49:131–138

    Article  CAS  Google Scholar 

  • San Miguel A, Raveton M, Lempérière G, Ravanel P (2008) Phenylpyrazoles impact on Folsomia candida (Collembola). Soil Biol Biochem 40:2351–2357. https://doi.org/10.1016/j.soilbio.2008.05.014

    Article  CAS  Google Scholar 

  • Scorza Jr RP, Frando AA (2013) A temperatura e umidade na degradação de fi pronil em dois solos de Mato Grosso do Sul. Ciência Rural 43:1203–1209

    Article  CAS  Google Scholar 

  • Segat JC, Alves PRL, Baretta D, Cardoso EJBN (2015) Ecotoxicological evaluation of swine manure disposal on tropical soils in Brazil. Ecotoxicol Environ Saf 122:91–97. https://doi.org/10.1016/j.ecoenv.2015.07.017

    Article  CAS  Google Scholar 

  • Silva RO, Scorza Jr RP, Bonfá MRL, Campanari MFZ, Mendes I, de C (2016) Degradation and sorption of fipronil and atrazine in Latossols with organic residues from sugarcane crop. Ciência Rural 46:1172–1177. https://doi.org/10.1590/0103-8478cr20150696

    Article  CAS  Google Scholar 

  • Singh A, Srivastava A, Srivastava PC (2014) Sorption kinetics of fipronil on soils. Bull Environ Contam Toxicol 93:758–763. https://doi.org/10.1007/s00128-014-1391-6

    Article  CAS  Google Scholar 

  • Singh A, Srivastava A, Srivastava PC (2016) Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature. Pest Manag Sci 72:1491–1499. https://doi.org/10.1002/ps.4173

    Article  CAS  Google Scholar 

  • Singh J, Schälder M, Demetrio W, et al. (2019) Climate change effects on earthworms—a review. Soil Organisms 3:113–137. (ISSN 2509-9523 (online)). https://doi.org/10.25674/so91iss3pp114

  • Sławski M, Sławska M (2020) Collembolan Assemblages Response to Wild Boars (Sus scrofa L.) Rooting in Pine Forest Soil. Forests 11(11):1123. https://doi.org/10.3390/f11111123

    Article  Google Scholar 

  • Smit CE, Van Gestel CAM (1998) Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ Toxicol Chem 17:1132–1141. https://doi.org/10.1002/etc.5620170621

  • Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AMVM (2000) Toxicokinetics of hydrophobic compounds in isopods. The importance of exposure route on the uptake of Lindane. Environ Toxicol Chem 19:2563–2577

    Article  Google Scholar 

  • Souza ED, Carneiro MAC, Paulino HB (2005) Physical attributes of a Typic Quartzipisamment and a Rhodic Hapludox under different management systems. Pesquisa Agropecuaria Brasileira 40:1135–1139. https://doi.org/10.1590/S0100-204X2005001100012

    Article  Google Scholar 

  • Spomer NA, Kamble ST (2010) Sorption and Desorption of Fipronil in Midwestern Soils. Bull Environ Contam Toxicol 84:264–268. https://doi.org/10.1007/s00128-009-9915-1

    Article  CAS  Google Scholar 

  • Szabó B, Seres A, Bakonyi G (2020) Distinct changes in the life-history strategies of Folsomia candida Willem (Collembola: Isotomidae) due to multi- and transgenerational treatments with an insecticide. App Soil Ecol 152:103563. https://doi.org/10.1016/j.apsoil.2020.103563

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais, 2nd edn. Universidade Federal do Rio Grande do Sul, Porto Alegre, p 147 (Boletim Técnico, 5)

  • Tingle CC, Rother JA, Dewhust CF, Lauer S, King WJ (2003) Fipronil: Environmental Fate, Ecotoxicology, and Human Health Concerns. Rev Environ Contam Toxicol 176:1–66

    Google Scholar 

  • Van Gestel CAM, Van Diepen AMF (1997) The influence of soil moisture content on the bioavailability and toxicity of cadmium for Folsomia candida Willem (Collembola: Isotomidae). Ecotoxicol Environ Saf 36:123–132. https://doi.org/10.1006/eesa.1996.1493

    Article  Google Scholar 

  • Van Gestel CAM (2012) Soil ecotoxicology: state of the art and future directions. Zookeys 176:275–296. https://doi.org/10.3897/zookeys.176.2275

    Article  Google Scholar 

  • Ying GG, Kookana RS (2006) Persistence and movement of fipronil termiticide with under-slab and trenching treatments. Environ Toxicol Chem 25:2045–2050. https://doi.org/10.1897/05-652R.1

    Article  CAS  Google Scholar 

  • Zortéa T, dos Reis TR, Serafini S, de Sousa JP, da Silva AS, Baretta D (2018a) Ecotoxicological effect of fipronil and its metabolites on Folsomia candida in tropical soils. Environ Toxicol Pharmacol 62:203–209. https://doi.org/10.1016/j.etap.2018.07.011

    Article  CAS  Google Scholar 

  • Zortéa T, da Silva AS, dos Reis TR, Segat JC, Paulino AT, Sousa JP, Baretta D (2018b) Ecotoxicological effects of fipronil, neem cake and neem extract in edaphic organisms from tropical soil. Ecotoxicol Environ Saf 166:207–214. https://doi.org/10.1016/j.ecoenv.2018.09.061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq) for the research grant (Project 407170/2016-2). DB thanks the CNPq for the Research Productivity Grant (CNPq 305939/2018-1). TT and WES thanks the CNPq for a Grant of Scientific Initiation (process numbers 160246/2019-9 and 103524/2020-7, respectively). FOB and TBH thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) for their master grant (process numbers 1735590 and 88882.447285/2019-01, respectively).

Author contributions

TBH: Conceptualization, Data curation, Formal analysis, Investigation, Writing—original draft. PRLA: Conceptualization, Formal analysis, Funding acquisition, Investigation, Project administration, Resources, Supervision, Writing—review & editing. TT: Investigation, Formal analysis. FOB: Investigation, Data curation, Formal analysis. WES: Investigation. LCC: Investigation, Data curation, Formal analysis. IKG: Investigation. DB: Resources, Supervision, Writing—review & editing.

Funding

This study was supported by the National Council for Scientific and Technological Development (CNPq) for the research grant (Project 407170/2016-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roger Lopes Alves.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Brazilian regimentation for the scientific use of animals - Law no. 11.794).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennig, T.B., Alves, P.R.L., Toniolo, T. et al. Toxicity of fipronil to Folsomia candida in contrasting tropical soils and soil moisture contents: effects on the reproduction and growth. Ecotoxicology 31, 64–74 (2022). https://doi.org/10.1007/s10646-021-02490-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02490-7

Keywords

Navigation