Skip to main content
Log in

Residual action of five insecticides on larvae and adults of the neotropical predators Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This work aimed to evaluate the residual action of five insecticides on larvae and adults of the predators Chrysoperla externa (Hagen) and Eriopis connexa (Germar). The insecticides gamma-cyhalothrin, imidacloprid+beta-cyfluthrin, methomyl, thiamethoxam, and thiamethoxam+lambda-cyhalothrin were sprayed in pod bean plants until the point of runoff. Weekly, at 3, 10, 17, 24, and 31 days, first instar larvae and adults of both predators were exposed to leaves containing dry residues of the insecticides. Based on the mortality observed throughout the bioassays, the insecticides were classified according to the scale of the residual effects proposed by the International Organization for Biological and Integrated Control (IOBC). Except for thiamethoxam+lambda-cyhalothrin, which was moderately persistent (class 3) to larvae of C. externa and E. connexa, all other tested insecticides were persistent (class 4) to larvae of both species. Gamma-cyhalothrin, imidacloprid + beta-cyfluthrin, and methomyl were persistent (class 4) to C. externa adults, while thiamethoxam was moderately persistent (class 3) and thiamethoxam + lambda-cyhalothrin was slightly persistent (class 2) to the adult stage. As for E. connexa adults, imidacloprid + beta-cyfluthrin and methomyl were persistent (class 4) and gamma-cyhalothrin, thiamethoxam, and thiamethoxam + lambda-cyhalothrin were moderately persistent (class 3). Thus, due to extended residual effect, these insecticides must be avoided when larvae and adults of both predators are active in the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrofit (2020) Sistema de inseticidas fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 2 Jan 2020

  • Albuquerque AS (2009) Crisopídeos (Neuroptera: Chrysopidae). In: Panizzi AR, Parra JRP (Org.) Bioecologia e nutrição de insetos: base para o manejo integrado de pragas. Brasília, Embrapa Informação Tecnológica, pp 969–1022

  • Alford DV (2011) Plant pests. HarperCollins, UK

    Google Scholar 

  • Almeida-Sarmento R, Pallini A, Venzon M, Souza OFF, Molina-Rugama AJ, Oliveira CL (2007) Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. Braz Arch Biol Technol 50:121–126

  • Amarasekare KG, Shearer PW (2013) Comparing effects of insecticides on two green lacewings species, Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae). J Econ Entomol. https://doi.org/10.1603/ec12483

  • Amarasekare KG, Shearer PW, Mills NJ (2016) Testing the selectivity of pesticides effects on natural enemies in laboaratory biossays. Biol Control. https://doi.org/10.1016/j.biocontrol.2015.10.015

  • Andrade KA, Aguiar-Menezes EL, Gonçalves-Esteves V, Mendonça CBF, Vieira GRM, Melo SJ, Melo GJB (2018) Pollen ingestion by Chrysoperla externa (Hagen) adults in a diversified organic agroecosystem. Neotrop Entomol. https://doi.org/10.1007/s13744-017-0537-8

  • Barik SR, Ganguly P, Kunda SK, Kole RK, Bhattacharyya A (2010) Persistence behaviour of thiamethoxam and lambda cyhalothrin in transplanted paddy. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-010-0101-2

  • Bueno ADF, Carvalho GA, Santos ACD, Sosa-Gómez DR, Silva DMD (2017) Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Cienc Rural. https://doi.org/10.1590/0103-8478cr20160829

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol. https://doi.org/10.1146/annurev-ento-120811-153645

  • Carvalho CF, Souza B (2000) Métodos de criação e produção de crisopídeos. In: Bueno VHP (Ed) Controle biológico de pragas: produção massal e controle de qualidade. UFLA, Lavras, p 91–109

    Google Scholar 

  • Carvalho GA, Grützmacher AD, Passos LC, Oliveira RL (2019) Physiological and ecological selectivity of pesticides for natural enemies of insects. In: Souza B, Vázquez L, Marucci R (Eds.) Natural enemies of insect pests in neotropical agroecosystems. Springer, Cham, p 469–478

    Chapter  Google Scholar 

  • Castilhos RV, Grützmacher AD, Coats JR (2017a) Acute toxicity and sublethal effects of terpenoids and essential oils on the predator Chrysoperla externa (Neuroptera: Chrysopidae). Neotrop Entomol. https://doi.org/10.1007/s13744-017-0547-6

  • Castilhos RV, Grützmacher AD, Neves MB, Moraes IL, Gauer CJ (2017b) Selectivity of insecticides used in peach farming to larvae of Chrysoperla externa (Neuroptera: Chrysopidae) in semi-field conditions. Rev Caatinga. https://doi.org/10.1590/1983-21252017v30n112rc

  • Castilhos RV, Grützmacher AD, Krüger LR, Siqueira PRB, Moraes IL (2019) Persistence of insecticides used in peach orchards to larvae and adults of the predator Chrysoperla externa (Neuroptera: Chrysopidae). Arq Inst Biol. https://doi.org/10.1590/1808-1657000312018

  • Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. Computes Rendus Biol. https://doi.org/10.1016/j.crvi.2010.03.009

  • De Armas FS, Grutzmacher AD, Nava DE, Pasini RA, Rakes M, de Bastos Pazini J (2020) Non-target toxicity of nine agrochemicals toward larvae and adults of two generalist predators active in peach orchards. Ecotoxicology. https://doi.org/10.1007/s10646-020-02177-5

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. https://doi.org/10.1146/annurev.ento.52.110405.091440

  • Diehl E, Sereda E, Wolters V, Birkhofer K (2013) Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. J Appl Ecol. https://doi.org/10.1111/1365-2664.12032

  • Duso C, Van Leeuwen T, Pozzebon A (2020) Improving the compatibility of pesticides and predatory mites: recent findings on physiological and ecological selectivity. Curr Opin Insect Sci. https://doi.org/10.1016/j.cois.2020.03.005

  • Fogel MN, Schneider MI, Rimoldi F, Ladux LS, Desneux N, Ronco AE (2016) Toxicity assessment of four insecticides with different modes of action on pupae and adults of Eriopis connexa (Coleoptera: Coccinellidae), a relevant predator of the Neotropical Region. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6654-9

  • Gaber AS, Abd-Ella AA, Abou-Elhagag GH, Abdel-Rahman YA (2015) Field efficiency and selectivity effects of selected insecticides on cotton aphid, Aphis gossypii Glover (Homoptera: Aphididea) and its predators. J Phytopathol Pest Manag 2:2–35

  • Giolo FP, Medina P, Grützmacher AD, Viñuela E (2009) Effects of pesticides commonly used in peach orchards in Brazil on predatory lacewing Chrysoperla carnea under laboratory conditions. BioControl. https://doi.org/10.1007/s10526-008-9197-2

  • Gómez WD, Polanía IZ (2009) Tabla de vida del cucarrón depredador Eriopis connexa connexa (Germar) (Coleoptera: Coccinellidae). Rev UDCA Actual Divulg Cient. https://doi.org/10.31910/rudca.v12.n2.2009.700

  • Haramboure M, Mirande L, Schneider MI (2015) Improvement of the mass rearing of larvae of the neotropical lacewing Chrysoperla externa through the incorporation of a new semiliquid artificial diet. BioControl. https://doi.org/10.1007/s10526-015-9699-7

  • Hassan SA (1994) Activities of the IOBC/WPRS working group pesticides and beneficial organisms. IOBC/WPRS Bull 17:1–5

    Google Scholar 

  • Hassan SA, Abdelgader HA (2001) sequential testing program to assess the effects of pesticides on Trichogramma cacoeciae Marchal (Hym., Trichogrammatidae). IOBC/WPRS Bull 24:71–81

  • Holman J (2009) Host plant catalog of aphids. Palaearctic Region. Springer Science, Dordrecht

    Book  Google Scholar 

  • IBAMA (2019) Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos. Acessed 6 Mar 2020

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. https://doi.org/10.1021/jf101303g

  • Korrat RAA, Ahmed SA, Badr NF (2019) The potential side effects of certain insecticide formulations on the green lacewing, Chrysoperla carnea (Stephens). J Plant Prot Pat. https://doi.org/10.21608/jppp.2019.78152

  • Leite MIS, Carvalho GA, Maia JB, Makiyama L, Vilela M (2010) Ação residual de inseticidas para larvas e adultos do predador Cycloneda sanguinea Linnaeus, 1763 (Coleoptera: Coccinellidae). Arq Inst Biol 77:275–282

  • Maia WJMS, Carvalho CF, Souza B, Cruz I, Maia TJAF (2004) Capacidade predatória e aspectos biológicos de Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com Rhopalosiphum maidis (Fitch, 1856) (Hemiptera: Aphididae). Cienc Agrotec 28:1259–1268

  • Maia JB, Carvalho GA, Medina P, Garzón A, Gontijo PC, Viñuela E (2016) Lethal and sublethal effects of pesticides on Chrysoperla carnea larvae (Neuroptera: Chrysopidae) and the influence of rainfastness in their degradation pattern over time. Ecotoxicology. https://doi.org/10.1007/s10646-016-1641-y

  • Medina P, Budia F, Tirry L, Smagghe G, Viñuela E (2001) Compatibility of spinosad, tebufenozide and azadirachtin with eggs and pupae of the predator Chrysoperla carnea (Stephens) under laboratory conditions. Biocontrol Sci Technol. https://doi.org/10.1080/09583150120076157

  • Mohamed HT, Mohamed IA, Abou-Elhagag GH, Saba RM (2015) Toxicity and field persistence of thiamethoxam and dinotefuran against cabbage aphid, Brevicoryne brassica L. (Homoptera: Aphididae) under laboratory and field conditions. J Phytopathol Pest Manag 2:20–26

  • Mortensen SR, Serex TL (2014) Methomyl. In: Wexler P (ed) Encyclopedia of toxicology, 3rd ed. Academic Press, Cambridge, p 242–245

    Chapter  Google Scholar 

  • Morales SI, Martínez AM, Figueroa JI, Campos-García J, Gómez-Tagle, A, Lobit P, Smagghe G, Pineda S (2019) Foliar persistence and residual activity of four insecticides of different mode of action on the predator Engytatus varians (Hemiptera: Miridae). Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.06.163

  • Overmeer WPJ, van Zon AQ (1982) A standardized method for testing the side effects of pesticides on the predacious mite, Amblyseius potentillae [Acarina: Phytoseiidae]. Biocontrol. https://doi.org/10.1007/BF02372057

  • Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen F (ed) Insecticides—Adv Integr Pest Manag. InTech, Rijeka, p 251–278

    Google Scholar 

  • Pasini RA, Grützmacher AD, Spagnol D, Armas FS, Normberg AV, Carvalho AJS (2017) Ação residual de agrotóxicos pulverizados em plantas de milho sobre Trichogramma pretiosum. Rev Ceres. https://doi.org/10.1590/0034-737x201764030004

  • Pasini RA, Grützmacher AD, de Bastos Pazini J, de Armas FS, Bueno FA, Pires SN (2018) Side effects of insecticides used in wheat crop on eggs and pupae of Chrysoperla externa and Eriopis connexa. Phytoparasitica. https://doi.org/10.1007/s12600-018-0639-9

  • Pekár S, Beneš J (2008) Aged pesticide residues are detrimental to agrobiont spiders (Araneae). J Appl Entomol. https://doi.org/10.1111/j.1439-0418.2008.01294.x

  • Picanço MC, Bacci L, Crespo ALB, Miranda MMM, Martins JC (2007) Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agr Forest Entomol. https://doi.org/10.1111/j.1461-9563.2007.00346.x

  • Püntener W (1981) Manual for field trials in plant protection. 2.ed. Basle, Ciba-Geigy

  • R Development Core Team (2020) R—A language and environment for statistical computing. version 4.0.0. http://r-project.org Accessed 3 May 2020

  • Radcliffe EB, Hutchison WD, Cancelado RE (2009) Integrated pest management: concepts, tactics, strategies and case studies. University Press, Cambridge, p 607–608

    Google Scholar 

  • Ramos RS, Sediyama CS, Queiroz EA, Costa TL, Martins JC, Araujo TA, Picanço MC (2016) Toxicity of insecticides to Chrysodeixis includens and their direct and indirect effects on the predator Blaptostethus pallescens. J Appl Entomol. https://doi.org/10.1111/jen.12382

  • Ricupero M, Desneux, N, Zappalà L, Biondi A (2020) Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125728

  • Roubos CR, Rodriguez-Saona C, Holdcraft R, Mason KS, Isaacs R (2014) Relative toxicity and residual activity of insecticides used in blueberry pest management: Mortality of natural enemies. J Econ Entomol. https://doi.org/10.1603/ec13191

  • Sâmia RR, Gontijo PC, Oliveira RL, Carvalho, GA (2019) Sublethal and transgenerational effects of thiamethoxam applied to cotton seed on Chrysoperla externa and Harmonia axyridis. Pest Manag Sci. https://doi.org/10.1002/ps.5166

  • Schmuck R, Candolfi MP, Kleiner R, Mead-Briggs M, Moll M, Kemmeter F, Jans D, Waltersdorfer A, Wilhelmy HA (2000) Laboratory test system for assessing effects of plant protection products on the plant dwelling insect Coccinella septempunctata L. (Coleoptera: Coccinellidae). In: Candolfi MP, Blumel S, Forster R, Bakker FM, Grimm C, Hassan SA, Heimbach U, Mead-Briggs MA, Reber B, Schmuck R, Vogt H (Eds) Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC/ WPRS, Reinheim, p 45–56

    Google Scholar 

  • Silva RB, Zanuncio JC, Serrão JE, Lima ER, Figueiredo MLC, Cruz I (2009) Suitability of different artificial diets for development and survival of stages of predaceous ladybird beetle Eriopis connexa (Coleoptera: Coccinellidae). Phytoparasitica. https://doi.org/10.1007/s12600-008-0015-2

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-3470-y

  • Soares JJ, Cordão Sobrinho FP, Melo RS, Ferreira AMC, Almeida CA (2003) Predação de Chrysoperla externa sobre diferentes presas. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/273471/1/COMTEC174.PDF. Accessed 15 May 2020

  • Soderlund DM (2010) Toxicology and mode of action of pyrethroid insecticides. In: Krieger R (Ed) Hayes’ handbook of pesticide toxicology. Academic Press, Cambridge, p 1665–1686

    Chapter  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Phys. https://doi.org/10.1016/j.pestbp.2014.11.014

  • Stark JD, Vargas R, Banks JE (2007) Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J Econ Entomol. https://doi.org/10.1603/0022-0493(2007)100[1027:iermop]2.0.co;2

  • Sterk G, Hassan SA, Baillod M, Bakker F, Bigler F, Blume S, Bogenschutz H, Boller E, Bromand B, Brun J, Calis JNM, Coremans-Pelseneer J, Duso C, Garrido A, Grove A, Heimbach U, Hokkanen H, Jacas J, Lewis G, Moreth L, Polgar L, Roversti L, Samsoe-Peterson L, Sauphanor B, Schaub L, Staubli A, Tuset JJ, Vainio A, Van de Veire M, Viggiani G, Vinuela E, Vogt H (1999) Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. Biocontrol. https://doi.org/10.1023/A:1009959009802

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol. https://doi.org/10.1146/annurev.ento.47.091201.145240

  • Ternes P, Candolfi MP, Ufer A, Vogt H (2001) Influence of leaf substrates on the toxicity of selected plant protection products to Typhlodromus pyri Scheuten (Acari: Phytoseiidae) and Aphidius rhopalosiphi DeStefani Perez (Hymenoptera: Aphidiidae). IOBC/WPRS Bull 24:7–15

  • Tengfei L, Yao W, Lixia Z, Yongyu X, Zhengqun Z, Wei M (2019) sublethal effects of four insecticides on the seven spotted lady beetle (Coleoptera: Coccinellidae). J Econ Entomol. https://doi.org/10.1093/jee/toz146

  • Torres AF, Carvalho GA, Santa-Cecília LVC, Moscardini VF (2013) Selectivity of seven insecticides against pupae and adults of Chrysoperla externa (Neuroptera: Chrysopidae). Rev Colomb Entomol 39:34–39

  • Venzon M, Lemos F, Sarmento RA, Rosado MC, Pallini A (2009) Predação por coccinelídeos e crisopídeo influenciada pela teia de Tetranychus evansi. Pesq Agropec Bras. https://doi.org/10.1590/S0100-204X2009000900003

  • Vogt H, Bigler F, Brown K, Candolfi MP, Kemmeter F, Kühner C, Moll M, Travis A, Ufer A, Viñuela E, Wladburger M, Waltersdorfer A (2000) Laboratory method to test effects of plant protection products on larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). In: Candolfi MP, Blumel S, Forster R, Bakker FM, Grimm C, Hassan SA, Heimbach U, Mead-Briggs MA, Reber B, Schmuck R, Vogt H (Eds) Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC/WPRS, Reinheim, p 27–44

    Google Scholar 

  • Wintermantel D, Odoux JF, Decourtye A, Henry M, Allier F, Bretagnolle V (2020) Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135400

  • Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology. https://doi.org/10.1016/j.virol.2015.03.026

Download references

Acknowledgements

This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

RAP planned, designed, executed experimental work, conducted data analyses, and wrote the manuscript. RVC, MR wrote the manuscript. JBP, MR executed experimental work and helped with data analyses. MR executed experimental work and wrote the manuscript. RZ executed experimental work. ADG wrote the manuscript and secured funding. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rafael Antonio Pasini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasini, R.A., Rakes, M., Castilhos, R.V. et al. Residual action of five insecticides on larvae and adults of the neotropical predators Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 30, 44–56 (2021). https://doi.org/10.1007/s10646-020-02314-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02314-0

Keywords

Navigation