Skip to main content

Advertisement

Log in

Side effects of a mixture of essential oils on Psyttalia concolor

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Integrated Pest Management programs do not always prioritize natural enemies when selecting control methods; too often these important pest reducing agents are negatively affected by the action of other methods in agroecosystems. The aim of this research was to evaluate side effects of a bioinsecticide, developed from the mixture of cedar (Cedrus atlantica), eucalyptus (Corymbia citriodora) and lemon grass (Cymbopogon citratus) essential oils (EOs), in a ratio of 1:1:1, on Psyttalia concolor (Szèpligeti) (Hymenoptera: Braconidae) which is a parasitoid of some pests of the Tephritidae family, as Ceratitis capitata. The LD50 of the EOs mixture for C. capitata females was 3.09 µl/g, whereas the LD50 for P. concolor females was 20.45 µl/g which suggests the natural enemy is more tolerant to the EOs mixture. P. concolor parasitized L3 larvae of C. capitata through a voile treated with the mixture of EOs at 1.8% without causing any deleterious effects neither on the percentage of attacked hosts nor on the emergence rate, whereas at the highest concentration tested, 4.8%, decreased both parameters during the 2 first days after treatment. Semi-field assays showed that mixture of EOs was harmless to P. concolor when released 4 h after treatment whereas killed 55 ± 3.9% males and 37.5 ± 1.6% females of C. capitata. The mixture of EOs used jointly with lambda-cyhalothrin or kaolin, both compounds applied against C. capitata in conventional and organic farming, respectively, did not increase the toxicity and/or persistence against the pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adán A, González T, Bastante R, Budia F, Medina P, Del Estal P, Viñuela E (2007) Efectos de diversos insecticidas aplicados en condiciones de laboratorio extendido sobre Psyttalia concolor (Szèpligeti) (Hymenoptera: Braconidae). Bol San Veg Plagas 33:391–397

    Google Scholar 

  • Alves TJS, Murcia A, Wanumen AC, Wanderley-Teixeira A, Teixeira AAC, Ortiz A, Medina P (2019) Composition and toxicity of a mixture of essential oils against mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) J Econ Entomol 112(1):164–172. https://doi.org/10.1093/jee/toy275

    Article  CAS  Google Scholar 

  • Arouri R, Goff GL, Hemden H, Navarro-Llopis V, M’saad M, Castañera P, Feyereisen R, Hernández-Crespo P, Ortego F (2015) Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain. Pest Manag Sci 71:1281–129

    CAS  Google Scholar 

  • Al-Sinjari SHS, Al-Attar HJ (2015) Toxic effects of essential oils of Elattaria cardamomum L. and Lambda-Cyhalothrin on Tribolium confusum (Duval). J Uniof Zakho 3A:15–26

    Google Scholar 

  • Arambourg Y (1986) Entomologie oleicole. Conseil Oleicole International, Madrid

    Google Scholar 

  • Arancibia MY, López-Caballero ME, Gómez-Guillén MC, Montero P (2014) Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control 44:7–15

    CAS  Google Scholar 

  • Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messeán AN, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agro Sustain Dev 35(4):1199–1215

    Google Scholar 

  • Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Control 26:325–332

    CAS  Google Scholar 

  • Benelli G, Canale A, Flamini G, Cioni PL, Demi F, Ceccarini L, Macchia M, Conti B (2013) Biotoxicity of Melaleuca alternifolia (Myrtaceae) essential oil against the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Ind Crop Prod 50:596–603

    CAS  Google Scholar 

  • Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, Petrelli R, Maggi F (2018) Acute and sub-lethal toxicity of eight essential oils of comercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind Crops Prod 112:668–680

    CAS  Google Scholar 

  • Bengochea P, Amor F, Saelices R, Hernando S, Budia F, Adán A, Medina P (2013) Kaolin and copper-based products applications: ecotoxicology on four natural enemies. Chemosphere 91(8):1189–1195

    CAS  Google Scholar 

  • Bengochea P, Budia F, Viñuela E, Medina P (2014a) Are kaolin and copper treatments safe to the olive fruit fly parasitoid Psyttalia concolor? J Pest Sci 87(2):351–359

    Google Scholar 

  • Bengochea P, Saelices R, Amor F, Adan A, Budia F, Del Estal P, Viñuela E, Medina P (2014b) Non-target effects of kaolin and coppers applied on olive trees for the predatory lacewing Chrysoperla carnea. Biocontrol Sci Technol 24(6):625–640

  • Beroiz B, Ortego F, Callejas C, Hernandez-Crespo P, Castañera P, Ochando MD (2012) Genetic structure of Spanish populations of Ceratitis capitata revealed by RAPD and ISSR markers: implications for resistance management. Span J Agric Res 10(3):815–825

    Google Scholar 

  • Berta DC, Colomo MV (2000) Dos especies nuevas de Bracon F. y primera cita para la Argentina de Bracon lucileae Marsh (Hymenoptera: Braconidae), parasitoides de Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae). Insecta Mundi 14:211–219

    Google Scholar 

  • Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    CAS  Google Scholar 

  • Biondi AA, Zappala L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal Effects? PLoS ONE 8(9):e76548

    CAS  Google Scholar 

  • Bürgel K, Daniel C, Wyss E (2005) Effects of autumn kaolin treatments on the rosy apple aphid, Dysaphis plantaginea (Pass.) and possible modes of action. J Appl Entomol 129(6):311–314

    Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366:1987–1998

    Google Scholar 

  • Cirelli KRN, Penteado-Dias AM (2003) Análise da riqueza da fauna de Braconidae (Hymenoptera, Ichneumonoidea) em remanescentes naturais da Área de Proteção Ambiental (APA) de Descalvado, SP. Rev Bras Entomol 47:89–98

    Google Scholar 

  • Daniel C, Pfammatter W, Kehrli P, Wyss E (2005) Processed kaolin as an alternative insecticide against the European pear sucker, Cacopsylla pyri (L.). J Appl Entomol 129:363–367. https://doi.org/10.1111/j.1439-0418.2005.00981.x

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  Google Scholar 

  • Dossi FAC, Cônsoli FL (2010) Desenvolvimento ovariano e influência da cópula na maturação dos ovários de Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Neotrop Entomol 39:414–419

    Google Scholar 

  • Chhipa H (2017) Nanopesticide: current status and future possibilities. Agric Res Tech Open Access J 5(1):555651. https://doi.org/10.19080/ARTOAJ.2017.05.555651

    Article  Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, Nanopesticides and Nanosensors in Agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture. Sustainable agriculture reviews, v.20. Springer, Cham, p 247–282

    Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    CAS  Google Scholar 

  • Cunha FM, Wanderley-Teixeira V, Torres JB, Teixeira AAC, Alves TJS, Brayner FA (2013) Impact of Bt cotton on the immune system and histology of the midgut of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Anim Bio 63:185–197. https://doi.org/10.1163/15707563-00002405

    Article  Google Scholar 

  • Dey D, Akhtar MS (2007) Diversity of natural enemies of aphids belonging to Aphidiinae (Hymenoptera: Braconidae) in India. J Asia-Pac Entomol 10:281–296

    Google Scholar 

  • Elfekih S, Shannon M, Haran J, Vogler AP (2014) Detection of the acetylcholinesterase insecticide resistance mutation (G328A) in natural populations of Ceratitis capitata. J Econ Entomol 107(5):1965–1968

    CAS  Google Scholar 

  • Faraone N, Hillier NK, Cutler GC (2015) Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae). PLoS ONE 10(5):e0127774

    Google Scholar 

  • Glenn M, Puterka GJ (2005) Particle films: a new technology for agriculture. Hortic Rev 31:1–44

    CAS  Google Scholar 

  • Glenn DM, Puterka GJ, Vanderzwet T, Stern RE, Feldmhake C (1999) Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases. J Econ Entomol 92(4):759–771

    Google Scholar 

  • Garzón A, Budia F, Medina P, Morales I, Fereres A, Viñuela E (2015) The effect of Chrysoperla carnea (Neuroptera: Chrysopidae) and Adalia bipunctata (Coleoptera: Coccinellidae) on the spread of cucumber mosaic virus (CMV) by Aphis gossypii (Hemiptera: Aphididae). Bull Entomol Res 105:13–22

    Google Scholar 

  • González-Núñez M, Viñuela E (1998) Effects of two modern pesticides: azadirachtin and tebufenozide on the parasitoid Opius concolor. IOBC/WPRS Bull 20(8):233–240

    Google Scholar 

  • IBM Corp. (2013) IBM SPSS statistics for Windows, version 22.0. IBM Corp, Armonk, NY

  • Iga M, Kataoka H (2012) Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol Pharm Bull 35(6):838–843

    CAS  Google Scholar 

  • Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64(1):8–11

    CAS  Google Scholar 

  • Isman MB (2020) Botanical insecticides in the twenty-first century—fulfilling their promise? Annu Rev Entomol 65:233–249

    CAS  Google Scholar 

  • Jacas JA, Viñuela E (1994) Analysis of a laboratory method to test the effects of pesticides on adult females of Opius concolor (Hym., Braconidae), a parasitoid of the olive fruit fly, Bactrocera oleae (Dip., Tephritidae). Biocontrol Sci Technol 4(2):147–154

    Google Scholar 

  • Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation and utilization in parasitoid reproductive strategies. Annu Rev Entomol 53:361–85

    CAS  Google Scholar 

  • Kachhawa D (2017) Microorganisms as a biopesticides. J Entomol Zool Stud 5(3):468–473

    Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84

    Google Scholar 

  • MAPA (2019) Official phytosanitary products entry. Ministry of Agriculture, Fisheries and Food. http://www.magrama.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro/menu.asp/. Accessed 16 Sep 2019

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10:2–15

    Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  • Mossa ATH (2016) Green pesticides: essential oils as biopesticides in insect-pest management. J Environ Sci Technol 9(5):354–378

    CAS  Google Scholar 

  • OJEU (2008). Commission regulation (EC) No 889/2008 of a September 2008. Official Journal of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008R0889-20180101. Accessed 16 Sep 2019

  • Orestes M, Baser N, Bubici G, Tarasco E (2015) Effect of Beauveria bassiana strains on the Ceratitis capitata - Psyttalia concolor system. Bull Insectol 68(2):265–272

    Google Scholar 

  • Pavela R, Maggi F, Petrelli R, Cappellacci L, Buccioni M, Palmieri A, Canale A, Benelli G (2020) Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem Toxicol 136:111037. https://doi.org/10.1016/j.fct.2019.111037

    Article  CAS  Google Scholar 

  • Quicke DLJ (1997) Parasitic wasp. Chapman & Hall, Cambridge

    Google Scholar 

  • Ramalho FS, Wanderley PA (1996) Ecology and management of cotton boll weevil in south Amarican cotton. Am Entomol 42:41–47

    Google Scholar 

  • Rehman JU, Wang XG, Johnson MW, Daane KM, Jilani G, Khan MA, Zalom FG (2009) Effects of Peganum harmala (Zygophyllaceae) seed extract on the olive fruit fly (Diptera: Tephritidae) and its larval parasitoid Psyttalia concolor (Hymenoptera: Braconidae). J Econ Entomol 102(6):2233–2240

    Google Scholar 

  • Robertson JR, Preisler HK, Russell RM (2002) Polo Plus: probit and logit analysis user’s guide, vol 36. CRC Press, Boca Raton, FL

  • Sanon A, Daribe C, Huignard J, Monge JP (2006) Influence of Hyptis suaveolens (Lamiaceae) on the host location behavior of the Parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae). Environ Entomol 35(3):718–724

    Google Scholar 

  • Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of theiceberg. Pest Manag Sci 57:958–967

    CAS  Google Scholar 

  • Shufeng Z, Sui YC, Boon CG, Eli C, Wei D, Min H, Mcleod HL (2005) Mechanism-based inhibition of cytochrome p450 3A4 therapeutic drug. Clin Pharmacokinet 44(3):279–304

    Google Scholar 

  • Silva CCA (2002) Aspectos do sistema imunológico dos insetos. Biotecnol Cien Desenv 24:68–72

    Google Scholar 

  • Stepanycheva E, Petrova M, Chermenskaya T, Pavela R (2019) Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ Sci Pollut Res 26:30885–30892

    CAS  Google Scholar 

  • Szépligeti GV (1911) Einer neuer Sigalphus (Braconidae) aus Dacus oleae Gmel. Bol Lab Zool Gen Agr Portici 5:223

    Google Scholar 

  • Statpoint Technologies (2013) Statgraphic Centurion XVI (v. 16.2.04). Statpoint Technologies, Warrenton, VA

  • Toscano LC, Carvalho SL (2000) Parasitismo em Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae) e Anagasta Kuhniella Zeller (Lepidoptera: Pyralidae) por Bracon vulgaris Ashmead (Hymenoptera: Braconidae). Braz J Ecol 12:23–28

    Google Scholar 

  • Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmacogn Phytother 1:052–063

    CAS  Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12:40–53

    CAS  Google Scholar 

  • Vontas J, Hernández-Crespo P, Margaritopoulos JT, Ortego F, Feng HT, Mathiopoulos KD, Hsu JC (2011) Insecticide resistance in Tephritid flies. Pestic Biochem Physiol 100:199–205

    CAS  Google Scholar 

  • Zapata N, Medina P, Gonzalez M, Budia F, Rodríguez B, Viñuela E (2004) Toxicidad de azadirona y 1,7+ 3,7-di-O-acetilhavanensina (4:1) sobre adultos de Psyttalia concolor (Szépligeti) (Hym.: Braconidae). Bol San Veg Plagas 30:783–789

    Google Scholar 

  • Way MJ, Emden HF (2000) Integrated pest management in practice—pathways towards successful application. Crop Prot 19(6):81–103

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Ministry of Science and Innovation (project AGL 2013-47603-C2-1 to E. Viñuela and PM). The authors thank CAPES for PDSE scholarship (BEX 7003/15-03) awarded to the first author. They are grateful to the technician, Luis Quirós for the rearing of insects used, as well as Flor Budia, and Sergio Estébanez for their contributions and suggestions in this research.

Funding

Spanish Ministry of Science and Innovation (projects AGL 2013-47603-C2-1 to PM) and CAPES for PDSE scholarship (BEX 7003/15-03) awarded to the first author TJSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago J. S. Alves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not describe any studies involving human participants performed by the authors. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, T.J.S., Murcia-Meseguer, A., Azpiazu, C. et al. Side effects of a mixture of essential oils on Psyttalia concolor. Ecotoxicology 29, 1358–1367 (2020). https://doi.org/10.1007/s10646-020-02258-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02258-5

Keywords

Navigation