Skip to main content

Advertisement

Log in

Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to microcystin-LR

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Gut microbiota has been shown to play critical roles in host health. The present study was to determine the toxicological effects of microcystin-LR (MCLR) on gut microbial community and metabolites using 16S rDNA sequencing and gas chromatography-mass spectrometry (GC-MS). MCLR was administered to BALB/c mice by gavage for eight weeks. Results of the microbial alpha-diversity (Sobs, Chao1, ACE and Shannon indexes) decreased in MCLR-treated group versus controls. Phylum Candidatus Saccharibacteria decreased significantly in MCLR-treated group versus controls. Correspondingly, more than thirties genera in relative abundance decreased, especially short chain fatty acid (SCFA)-producing bacteria (e.g., Alistipes and Ruminococcus). These results indicated that the gut microbial community structure was remarkably changed by MCLR. Furthermore, concentrations of SCFAs were significantly decreased after MCLR exposure (P < 0.01), where butyrate decreased as high as 4.9-fold. Consequently, sub-chronic exposure to MCLR could not only alter the microbial composition but metabolites. This study offered novel insights into the toxic mechanism of MCs from gut microbiota, and facilitated further clarification of risks to human health from MCs exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235

    CAS  Google Scholar 

  • Barcelo A, Claustre J, Moro F, Chayvialle JA, Plaisancie P (2000) Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46(2):218–224

    CAS  Google Scholar 

  • Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2(6):371–382

    CAS  Google Scholar 

  • Bingham SA, Day NE, Luben R et al. (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361(9368):1496–1501

    Google Scholar 

  • Botha N, Vand VM, Downing TG, Shephard EG, Gehringer MM (2004) The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon 43(3):251–254

    CAS  Google Scholar 

  • Caliz J, Montserrat G, Esther M, Sierra J, Cruasas R, Garau MA, Triado-Margarit X, Vila X (2012) The exposition of a calcareous Mediterranean soil to toxic concentrations of Cr, Cd and Pb produces changes in the microbiota mainly related to differential metal bioavailability. Chemosphere 89(5):494–504

    CAS  Google Scholar 

  • Chen J, Xie P, Lin J, He J, Zeng C, Chen J (2015) Effects of microcystin-LR on gut microflora in different gut regions of mice. J Toxicol Sci 40(4):485

    CAS  Google Scholar 

  • Chi Y, Lin Y, Zhu H, Huang Q, Ye G, Dong S (2018) PCBs–high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice. Environ Pollut 239:332–341

    CAS  Google Scholar 

  • Christen V, Meili N, Fent K (2013) Microcystin-LR induces endoplasmatic reticulum stress and leads to induction of NFkB, interferon-alpha and tumor necrosis factor-alpha. Environ Sci Technol 47:3378–3385

    CAS  Google Scholar 

  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N et al. (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588

    CAS  Google Scholar 

  • Daïen CI, Pinget GV, Tan JK, Macia L (2017) Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: an overview. Front Immunol 8:548

    Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol R 70(4):939–1031

    CAS  Google Scholar 

  • Ding WX, Shen HM, Ong CN (2001) Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J Toxicol Env Health 64:507–519

    CAS  Google Scholar 

  • Dixon RA, AlNazawi M, Alderson G (2004) Permeabilising effects of sub-inhibitory concentrations of microcystin on the growth of Escherichia coli. FEMS Microbiol Lett 230:167–170

    CAS  Google Scholar 

  • Forslund K, Hildebrand F, Nielsen T, Falnoy G, Chatelier EL, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergarrd H, Hercog R, Costea P, Kultima JR, Li JH, Jorgensen T, Levenz F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich DS, Bork P, Pedersen O (2017) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 545(7652):116

    CAS  Google Scholar 

  • Forslund K, Hildebrand F, Nielsen T, Falnoy G, Chatelier EL, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergarrd H, Hercog R, Costea P, Kultima JR, Li JH, Jorgensen T, Levenz F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich DS, Bork P, Pedersen O (2015) Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota. Nature 528(7581):262

    CAS  Google Scholar 

  • Foxall TL, Sasner JJ (1998) Effects of a hepatic toxin from the cyanophyte Microcystis aeruginosa. In: Carmichael WW (Eds) The water environment. Algal Toxins and Health. Plenum Press, New York

    Google Scholar 

  • Goel A, Gupta M, Aggarwal R (2014) Gut microbiota and liver disease. J Gastroen Hepatol 29(6):1139–1148

    Google Scholar 

  • Guo M, Huang K, Chen S, Qi X, He X, Chen W, Luo Y, Xia K, Xu W (2014) Combination of metagenomics and culture-based methods to study the interaction between ochratoxin A and gut microbiota. Toxicol Sci 141(1):314–323

    CAS  Google Scholar 

  • Guo X, Liu S, Wang Z, Zhang X, Li M, Wu B (2014) Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112:1–8

    CAS  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2007) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119

    Google Scholar 

  • Hatayama H, Iwashita J, Kuwajima A, Abe T (2007) The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res 356(3):599–603

    CAS  Google Scholar 

  • He J, Chen J, Xie P, Zhang D, Li G, Wu L, Zhang W, Guo X, Li S (2012) Quantitatively evaluating detoxification of the hepatotoxic microcystins through the glutathione and cysteine pathway in the cyanobacteria-eating bighead carp. Aquat Toxicol 116:61–68

    Google Scholar 

  • He J, Li G, Chen J, Lin J, Zeng C, Chen J, Deng J, Xie P (2017) Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study. Arch Toxicol 91:465–480

    CAS  Google Scholar 

  • Horng YT, Wang CJ, Chung WT, Chao HR, Chen YY, Soo PC (2017) Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J Microbiol Immunol Infect 51(2)

  • Ito E, Kondo F, Harada K (2000) First report on the distribution of orally administered microcystin-LR in mouse tissue using an immunostaining method. Toxicon 38:37–48

    CAS  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG et al. (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  Google Scholar 

  • Li H, Cai Y, Xie P, Chen J, Hao L, Li G, Xiong Q (2012) Identification and expression profile of Id1 in bighead carp in response to microcystin-LR. Environ Toxicol Pharmacol 34(2):324–333

    CAS  Google Scholar 

  • Li W, He J, Chen J, Xie P (2018) Excretion pattern and dynamics of glutathione detoxification of microcystins in Sprague Dawley rat. Chemosphere 191:357–364

    CAS  Google Scholar 

  • Lin J (2015) Shift of microbiota and metagenome in gut of mice after exposure to microcystin-LR-to explore the microbial dysbiosis and dysfunction related to gastroenteritis induced by microcystin-LR (PhD thesis). Chinese Academy of Science, China

  • Liu L, Xie P (2014). Effects of microcystin-LR on the digestive enzyme activity of intestinal tract in BALB/C mice. Acta Hydrobiol Sin 533–539

  • Lloyd CR, Park S, Fei J, Vanderpool CK (2017) The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199(11):2–16

    Google Scholar 

  • Loh G, Blaut M (2012) Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3(6):544

    Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR et al. (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci USA 09:1691–1696

    Google Scholar 

  • Mardinoglu A, Boren J, Smith U (2016) Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab 23(1):10–12

    CAS  Google Scholar 

  • Meijer HP, Welters CF, Heineman E, Salomons GS, Buller HA, Dekker J, Einerhand AW (2000) Enteral inulin does not affect epithelial gene expression and cell turnover within the ileoanal pouch. Dis Colon Rectum 43(10):1427–1434

    CAS  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    CAS  Google Scholar 

  • Moreno IM, Mate A, Repetto G, Vazquez CM, Camean AM (2003) Influence of microcystin-LR on the activity of membrane enzymes in rat intestinal mucosa. J Physiol Biochem 59:293–299

    CAS  Google Scholar 

  • Mutlu EA, Comba IY, Cho T, Engen PA, Yazici C, Soberanes S, Hamanaka BR, Nigdelioglu R, Meliton YA, Ghio AJ, Budinger GRS, Mutlu GM (2018) Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut 240:817–830

    CAS  Google Scholar 

  • Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118(6):420–424

    CAS  Google Scholar 

  • Park Y, Hunter DJ, Spiegelman D et al. (2006) Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. Dig World Core Med J 294(22):2849–2857

    Google Scholar 

  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D et al. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    CAS  Google Scholar 

  • Ren Z, Li A, Jiang J et al. (2018) Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 0:1–10

    Google Scholar 

  • Roda A, Simoni P, Magliulo M, Nanni P, Baraldini M, Roda G, Roda E (2007) A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J Gastroenterol 13(7):1079–1084

    CAS  Google Scholar 

  • Sands BE (2007) Inflammatory bowel disease: past, present, and future. J Gastroenterol 42(1):16–25

    Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and non-starch polysaccharides. Physiol Rev 81:1031–1064

    CAS  Google Scholar 

  • Vaishnava S, Yamamoto M, Severson KM, Kelly A, Xiaofei Y, Omry K, Ruth Ley, Edward K, Wakeland, Hooper LV (2011) The antibacterial lectin regiiiγ promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258

    CAS  Google Scholar 

  • Valdor R, Aboal M (2007) Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49:769–779

    CAS  Google Scholar 

  • Veldee MV (1931) An epidemiological study of suspected water-borne gastroenteritis. Am J Public Health 21:1227–1235

    CAS  Google Scholar 

  • Vonaesch P, Morien E, Andrianonimiadana L, Sanke H, Mbecko JR, et al. (2018) Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc Natl Acad Sci USA 201806573

  • Wilck N, Matus MG, Kearney SM et al. (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682):585–589

    CAS  Google Scholar 

  • Wood R (2016) Acute animal and human poisonings from cyanotoxin exposure—a review of the literature. Environ Int 91:276–282

    CAS  Google Scholar 

  • Wu B, Cui H, Peng X, Pan K, Fang J, Zuo Z, Deng J, Wang X, Huang J (2014) Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol Environ Saf 109:70–76

  • Wu Y, Yang Y, Cao L, Yin HQ, Xu MY, Wang ZJ, Liu YY, Wang X, Deng Y (2018) Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. Sci Rep 8:11–29

    Google Scholar 

  • Yang CY, Li DH, Liu YD (2008) The effect of microcystin on the growth and some physio-biochemical characteristics of representative microbial species. Acta Hydrobiol Sin 32:818–823

    CAS  Google Scholar 

  • Yin N, Cai X, Du H, Zhang Z, Li Z, Chen X, Sun G, Cui Y (2017) In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2cells. Chemosphere 168:358–364

    CAS  Google Scholar 

  • Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura S-i, Ueno Y (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat Toxins 5:91–95

    CAS  Google Scholar 

  • Zhang S, Zhou Z, Li Y, Meng F (2017) Deciphering the core fouling-causing microbiota in a membrane bioreactor: low abundance but important roles. Chemosphere 195:108

    Google Scholar 

  • Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 7:e42529

    CAS  Google Scholar 

  • Zhao X, Jiang Z, Yang F, Wang Y, Gao XM, Wang YF, Chai X, Pan GX, Zhu Y (2016) Sensitive and simplified detection of antibiotic influence on the dynamic and versatile changes of fecal short-chain fatty acids. PloS ONE 11(12):e0167032

    Google Scholar 

  • Zhou L, Yu D, Yu H, Chen K, Shen G, Shen Y, Yuan Y, Ding X (2000) Drinking water types microcystins and colorectal cancer. Chin J Prevent Med 34:224–227

    CAS  Google Scholar 

Download references

Funding

The project was supported by Youth Foundations of Changchun University of Science and Technology, China (XQNJJ-2016-16), Science and Technology Research Project of Jilin Province, China (JJKH20181128KJ) and Undergraduate Innovation and Entrepreneurship Training Program of JiLin Province (201910186177, 201910186187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilin, Z., Pengyu, Z., Wei, L. et al. Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to microcystin-LR. Ecotoxicology 29, 1347–1357 (2020). https://doi.org/10.1007/s10646-020-02254-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02254-9

Keywords

Navigation