Toxic response of the bacterium Vibrio fischeri to sodium lauryl ether sulphate residues in excavated soils

Abstract

Sodium lauryl ether sulphate (SLES) is the main chemical component in several lubricant products used for soil conditioning in the mechanized excavation industry using Earth Pressure Balance-Tunnel Boring Machines. During the tunnelling process, huge amounts of excavated soil are produced and the SLES presence can affect the subsequent re-use of this material as a by-product. Currently, there is still no regulatory indication of reliable and sensitive bioassays for monitoring soil quality during the excavation process. The main objective of this work was to verify if the Vibrio fischeri screening test was suitable as a consistent and precautionary tool for this specific purpose. Firstly, the ecotoxicity (EC20 and EC50) of the SLES standard solution and three commercial products (SLES content from 10 to 50%) were evaluated to select the most environmental friendly product. Subsequently, soil samples from about 2 years of tunnelling in a real construction site, conditioned with the selected product, were evaluated for their environmental compatibility with the prescriptions of an Italian site-specific protocol. The latter established 2 mg/L as a threshold value for SLES concentration in soil water extracts and a no toxic response (≤20%) for the Vibrio fischeri test. The comparison of the bacterium bioluminescence inhibition values (%) with analytical determinations showed an ecotoxicity when SLES was >2 mg/L. The toxicity was directly related to SLES concentration, indicating that the V. fischeri test and the SLES analyses are suitable tools for assessing excavated soil as a by-product, ensuring its safe reuse in accordance with a green production process (circular economy).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbas M, Adil M, Ehtisham-Ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar GA, Asif Tahir M, Iqbal M (2018) Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review. Sci Total Environ 626:1295–1309. https://doi.org/10.1016/j.scitotenv.2018.01.066

    CAS  Article  Google Scholar 

  2. Aoudia M, Al-Maamari T, Al-Salmi F (2009) Intramolecular and intermolecular ion-dipole interactions in sodium lauryl ether sulfates (SLES) self-aggregation and mixed micellization with Triton X-100. Colloids Surf A Physicochem Eng Asp 335:55–61. https://doi.org/10.1016/j.colsurfa.2008.10.026

    CAS  Article  Google Scholar 

  3. Barra Caracciolo A, Ademollo N, Cardoni M, Di Giulio A, Grenni P, Pescatore T, Rauseo J, Patrolecco L (2019) Assessment of biodegradation of the anionic surfactant sodium lauryl ether sulphate used in two foaming agents for mechanized tunnelling excavation. J Hazard Mater 365:538–545. https://doi.org/10.1016/j.jhazmat.2018.11.002

    CAS  Article  Google Scholar 

  4. Barra Caracciolo A, Cardoni M, Pescatore T, Patrolecco L (2017) Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents for mechanized tunnelling. Environ Pollut 226:94–103. https://doi.org/10.1016/j.envpol.2017.04.008

    CAS  Article  Google Scholar 

  5. Bispo A, Jourdain M, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30:947–952. https://doi.org/10.1016/S0146-6380(99)00078-9

    CAS  Article  Google Scholar 

  6. Bláha L, Hilscherová K, Čáp T, Klánová J, Machát J, Zeman J, Holoubek I (2010) Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: Relationships with the matrix composition and contamination. Environ Toxicol Chem 29:507–514. https://doi.org/10.1002/etc.81

    CAS  Article  Google Scholar 

  7. Borio L, Peila D (2011) Laboratory test for EPB tunnelling assessment: results of test campaign on two different granular soils. Gospod Surowcami Miner 27:85–100. https://min-pan.krakow.pl/wp-content/uploads/sites/4/2017/12/borio-peila.pdf. Accessed 10 Mar 2019

  8. Chen SS, Sun Y, Tsang DCW, Graham NJD, Ok YS, Feng Y, Li XD (2017) Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities. Sci Total Environ 579:1419–1426. https://doi.org/10.1016/j.scitotenv.2016.11.141

    CAS  Article  Google Scholar 

  9. Coz A, González-Piñuela C, Andrés A, Viguri JR (2007) Physico-chemical and environmental characterisation of sediments from Cantabrian estuaries (Northern Spain). Aquat Ecosyst Health Manag 10(1):41–46. https://doi.org/10.1080/14634980701212118

    CAS  Article  Google Scholar 

  10. D’Aloia Schwartzentruber L, Robert F (2019) Management and use of materials excavated during underground works. In: Peila D, Viggiani G, Celestino T (eds) Tunnels and underground cities. Engineering and innovation meet archaeology, architecture and art. Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress (WTC 2019). CRC Press, Taylor and Francis group, London, UK, pp 284–293

  11. EFNARC (2005) Specification and guidelines for the use of specialist products for mechanised tunnelling (TBM) in soft ground and hard rock. EFNARC, The European Federation of Specialist Construction Chemicals and Concrete Systems. http://www.efnarc.org/pdf/TBMGuidelinesApril05.pdf. Accessed 10 Mar 2019

  12. Environment Canada (2007) Guidance Document on Statistical methods for environmental toxicity tests. Method Development and Applications Section, Environmental Technology Centre, Environment Canada. Environmental Protection series. EPS 1/RM/46. 283 pp. http://publications.gc.ca/site/eng/278313/publication.html. Accessed 10 Jan 2020

  13. European Commission (2019) Environment Action Programme to 2020. European Commission. http://ec.europa.eu/environment/action-programme. Accessed 18 June 2019

  14. European Commission (2012) COM(2012) 46 final, Report From the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions the implementation of the Soil Thematic Strategy and ongoing activities. European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52012DC0046. Accessed 1 Mar 2020

  15. Finizio A, Patrolecco L, Grenni P, Galli E, Muzzini VG, Rauseo J, Rizzi C, Barra Caracciolo A (2020) Environmental risk assessment of the anionic surfactant sodium lauryl ether sulphate in site-specific conditions arising from mechanized tunnelling. J Hazard Mater 383:121116. https://doi.org/10.1016/j.jhazmat.2019.121116

    CAS  Article  Google Scholar 

  16. Galli E, Muzzini VG, Finizio A, Fumagalli P, Grenni P, Barra Caracciolo A, Rauseo J, Patrolecco L (2019) Ecotoxicity of foaming agent conditioned soils tested on two terrestrial organisms. Environ Eng Manag J 18:1703–1710

    CAS  Article  Google Scholar 

  17. Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–29. https://doi.org/10.1016/j.aca.2007.12.008

    CAS  Article  Google Scholar 

  18. Glover RE, Smith RR, Jones MV, Jackson SK, Rowlands CC (1999) An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol. Lett. 177(1):57–62. https://doi.org/10.1016/S0378-1097(99)00289-X

    CAS  Article  Google Scholar 

  19. Grenni P, Barra Caracciolo A, Patrolecco L, Ademollo N, Rauseo J, Saccà ML, Mingazzini M, Palumbo MT, Galli E, Muzzini V, Polcaro CM, Donati E, Lacchetti I, Di Giulio A, Gucci P, Beccaloni E, Mininni G (2018) A bioassay battery for the ecotoxicity assessment of soils conditioned with two different commercial foaming products. Ecotoxicol Environ Saf 148:1067–1077. https://doi.org/10.1016/j.ecoenv.2017.11.071

    CAS  Article  Google Scholar 

  20. Grenni P, Barra Caracciolo A, Patrolecco L (2019) Site-specific protocols for evaluating environmental compatibility of spoil materials produced by EPB-TBMs. In: Peila D, Viggiani G, Celestino T (eds) Tunnels and underground cities. Engineering and innovation meet archaeology, architecture and art. CRC Press, Taylor and Francis group, London, UK, pp 360–366

  21. Guéguen C, Gilbin R, Pardos M, Dominik J (2004) Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (Poland). Appl Geochemistry 19:153–162. https://doi.org/10.1016/S0883-2927(03)00110-0

    CAS  Article  Google Scholar 

  22. Hsieh C-Y, Tsai M-H, Ryan DK, Pancorbo OC (2004) Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Sci Total Environ 320:37–50. https://doi.org/10.1016/S0048-9697(03)00451-0

    CAS  Article  Google Scholar 

  23. Huang X, Liu Q, Shi K, Pan Y, Liu J (2018) Application and prospect of hard rock TBM for deep roadway construction in coal mines. Tunn Undergr Sp Technol 73:105–126. https://doi.org/10.1016/j.tust.2017.12.010

    Article  Google Scholar 

  24. Hubálek T, Vosáhlová S, Matějů V, Kovácová N, Novotný C (2007) Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Arch Environ Contam Toxicol 52:1–7. https://doi.org/10.1007/s00244-006-0030-6

    CAS  Article  Google Scholar 

  25. Ishaque A, Johnson L, Gerald T, Boucaud D, Okoh J, Tchounwou PB (2006) Assessment of individual and combined toxicities of four non-essential metals (As, Cd, Hg and Pb) in the microtox assay. Int J Environ Res Public Health 3:118–120. https://doi.org/10.3390/ijerph2006030014

    CAS  Article  Google Scholar 

  26. ISPRA (2016) Protocol for the assessment of the environmental compatibility of excavated earth and rocks to be protected during construction for the construction of the S. Lucia Tunnel of the A1 Barberino del Mugello - Calenzano motorway. Rome Italian Institute for Environmental Protection and Research (Protocollo per la valutazione della compatibilità ambientale delle terre e rocce da scavo da adottare in corso d’opera per la realizzazione della Galleria S. Lucia dell’Autostrada A1 Barberino del Mugello–Calenzano. Rome. Istituto superiore per la protezione e la ricerca ambientale. In Italian)

  27. ITA-AITES (2019) WG14+WG15—Mechanized tunnelling+underground and environment—handling treatment and disposal of tunnel spoil materials. Società Italiana Gallerie. https://about.ita-aites.org/files/WG14-15-ITA-REPORT-MudHandling.pdf. Accessed 10 Mar 2020

  28. Jarque S, Masner P, Klánová J, Prokeš R1, Bláha L (2016) Bioluminescent Vibrio fischeri assays in the assessment of seasonal and spatial patterns in toxicity of contaminated river sediments. Front Microbiol 7:1738. https://doi.org/10.3389/fmicb.2016.01738

    Article  Google Scholar 

  29. Karray F, Mezghani M, Mhiri N, Djelassi B, Sayadi S (2016) Scale-down studies of membrane bioreactor degrading anionic surfactants wastewater: isolation of new anionic-surfactant degrading bacteria. Int Biodeterior Biodegradation 114:14–23. https://doi.org/10.1016/j.ibiod.2016.05.020

    CAS  Article  Google Scholar 

  30. la Farré M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27:991–1007. https://doi.org/10.1016/j.trac.2008.09.010

    CAS  Article  Google Scholar 

  31. la Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends Anal Chem 22:299–310. https://doi.org/10.1016/S0165-9936(03)00504-1

    CAS  Article  Google Scholar 

  32. la Farré M, Ferrer I, Ginebreda A, Figueras M, Olivella L, Tirapu L, Vilanova M, Barceló D (2001a) Determination of drugs in surface water and wastewater samples by liquid chromatography–mass spectrometry: methods and preliminary results including toxicity studies with Vibrio fischeri. J Chromatogr A 938:187–197. https://doi.org/10.1016/S0021-9673(01)01154-2

    Article  Google Scholar 

  33. la Farré M, Garcı́a M-J, Tirapu L, Ginebreda A, Barceló D (2001b) Wastewater toxicity screening of non-ionic surfactants by Toxalert® and Microtox® bioluminescence inhibition assays. Anal Chim Acta 427:181–189. https://doi.org/10.1016/S0003-2670(00)01022-9

    Article  Google Scholar 

  34. Lappalainen J, Juvonen R, Nurmi J, Karp M (2001) Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45:635–641. https://doi.org/10.1016/S0045-6535(00)00579-8

    CAS  Article  Google Scholar 

  35. Li JL, Chen BH (2009) Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons Materials 2(1):76–94. https://doi.org/10.3390/ma2010076

    CAS  Article  Google Scholar 

  36. Lopez-Roldan R, Kazlauskaite L, Ribo J, Riva MC, González S, Cortina JL (2012) Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Sci Total Environ 440:307–313. https://doi.org/10.1016/j.scitotenv.2012.05.043

    CAS  Article  Google Scholar 

  37. Ma XY, Wang XC, Ngo HH, Guo W, Wu MN, Wang N (2014) Bioassay based luminescent bacteria: interferences, improvements, and applications. Sci Total Environ 468–469:1–11. https://doi.org/10.1016/j.scitotenv.2013.08.028

    CAS  Article  Google Scholar 

  38. Marguí E, Iglesias M, Camps F, Sala L, Hidalgo M (2016) Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility. Environ Sci Pollut Res 23:4454–4464. https://doi.org/10.1007/s11356-015-5618-9

    CAS  Article  Google Scholar 

  39. Mariani L, De Pascale D, Faraponova O, Tornambè A, Sarni A, Giuliani S, Ruggiero G, Onorati F, Magaletti E (2006) The use of a test battery in marine ecotoxicology: the acute toxicity of sodium dodecyl sulfate. Environ Toxicol 21:373–379. https://doi.org/10.1002/tox.20204

    CAS  Article  Google Scholar 

  40. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 5:123–142

    Article  Google Scholar 

  41. Meighen EA (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7:1016–1022. https://doi.org/10.1096/fasebj.7.11.8370470

    CAS  Article  Google Scholar 

  42. Meistro N, Parisi G, Zippo C, Captini L (2019) Management of tunneling machines excavation material. In: Peila D, Viggiani G, Celestino T (eds) Tunnels and underground cities. Engineering and innovation meet archaeology, architecture and art. Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress (WTC 2019). CRC Press, Taylor and Francis group, London, UK, pp 455–463

  43. Mininni G, Sciotti A, Martelli F (2018) Characterization and management of excavated soil and rock. In: SETAC Europe (ed) SETAC Europe 28th Annual Meeting, Responsible and Innovative Research for Environmental Quality. Society of Environmental Toxicology and Chemistry Europe (SETAC Europe) Abstract book. p 96 https://rome.setac.org/wp-content/uploads/2018/04/abstract-book_scientific-part_FINAL-cover-3.pdf. Accessed 2 Mar 2020

  44. Murr R, Cordes T, Hofmann M, Bergmeister K (2019) Autarkic aggregate supply with recycled tunnel spoil at the Brenner Base Tunnel. In: Peila D, Viggiani G, Celestino T (eds) Tunnels and underground cities. Engineering and innovation meet archaeology, architecture and art. Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress (WTC 2019). CRC Press, Taylor and Francis group, London, UK, pp 495–504

  45. OECD (2006) Test No. 208: terrestrial plant test: seedling emergence and seedling growth test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris

  46. OECD (1984) Test No. 207: earthworm, acute toxicity tests. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris

  47. Ortiz de García SA, Pinto Pinto G, García-Encina PA, Irusta-Mata R (2014) Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23:1517–1533. https://doi.org/10.1007/s10646-014-1293-8

    CAS  Article  Google Scholar 

  48. Padulosi S, Martelli F, Sciotti A, et al. (2019) Environmental risk assessment of conditioned soil: some Italian case studies. In: Peila D, Viggiani G, Celestino T (eds) Tunnels and underground cities. Engineering and innovation meet archaeology, architecture and art. Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress (WTC 2019). CRC Press, Taylor and Francis group, London, UK, pp 505–514

  49. Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268. https://doi.org/10.1016/j.envint.2005.08.022

    CAS  Article  Google Scholar 

  50. Peila D (2014) Soil conditioning for EPB shield tunnelling. KSCE J Civ Eng 18:831–836. https://doi.org/10.1007/s12205-014-0023-3

    Article  Google Scholar 

  51. Peila D, Oggeri C, Vinai R (2007) Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations. J Geotech Geoenvironmental Eng 133:622–1625. https://doi.org/10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  52. Peila D, Picchio A, Martinelli D, Negro ED (2016) Laboratory tests on soil conditioning of clayey soil. Acta Geotech 11:1061–1074. https://doi.org/10.1007/s11440-015-0406-8

    Article  Google Scholar 

  53. Reemtsma T, Putschew A, Jekel M (1999) Industrial wastewater analysis: a toxicity-directed approach. Waste Manag 19:181–188. https://doi.org/10.1016/S0956-053X(99)00011-2

    CAS  Article  Google Scholar 

  54. Rosen G, Osorio-Robayo A, Rivera-Duarte I, Lapota D (2008) Comparison of bioluminescent Dinoflagellate (QwikLite) and Bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Arch Environ Contam Toxicol 54:606–611. https://doi.org/10.1007/s00244-007-9068-3

    CAS  Article  Google Scholar 

  55. Salizzato M, Pavoni B, Volpi Ghirardini A, Ghetti PF (1998) Sediment toxicity measured using Vibrio fischeri as related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36:2949–2968. https://doi.org/10.1016/S0045-6535(98)00001-0

    CAS  Article  Google Scholar 

  56. Serafim A, Company R, Lopes B et al. (2013) Evaluation of sediment toxicity in different Portuguese estuaries: ecological impact of metals and polycyclic aromatic hydrocarbons. Estuar Coast Shelf Sci 130:30–41. https://doi.org/10.1016/j.ecss.2013.04.018

    CAS  Article  Google Scholar 

  57. Talebi K, Memarian H, Rostami J, Alavi Gharahbagh E (2015) Modeling of soil movement in the screw conveyor of the earth pressure balance machines (EPBM) using computational fluid dynamics. Tunn Undergr Sp Technol 47:136–142. https://doi.org/10.1016/j.tust.2014.12.008

    Article  Google Scholar 

  58. Thomas DJL, Tyrrel SF, Smith R, Farrow S (2009) Bioassays for the evaluation of landfill leachate toxicity. J Toxicol Environ Heal Part B 12:83–105. https://doi.org/10.1080/10937400802545292

    CAS  Article  Google Scholar 

  59. Thompson M, Stephen ELR, Wood R (2002) Harmonised guidelines for the in-house validation of methods of analysis (IUPAC technical report). Pure Appl Chem 74:835–855

    CAS  Article  Google Scholar 

  60. Tsybulskii IE, Sazykina MA (2010) New biosensors for assessment of environmental toxicity based on marine luminescent bacteria. Appl Biochem Microbiol 46:505–510. https://doi.org/10.1134/S0003683810050078

    CAS  Article  Google Scholar 

  61. UNI EN ISO (2019) Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—part 3: method using freeze-dried bacteria. UNI EN ISO 11348-3:2019

    Google Scholar 

  62. UNI EN (2004) Characterisation of waste—leaching—compliance test for leaching of granular waste materials and sludge UNI EN 12457-2:2004

  63. UNI EN (2005) Characterization of waste—preparation of waste samples for ecotoxicity tests. UNI EN 14735:2005

    Google Scholar 

  64. Vinai R, Oggeri C, Peila D (2008) Soil conditioning of sand for EPB applications: a laboratory research. Tunn Undergr Sp Technol 23:308–317. https://doi.org/10.1016/j.tust.2007.04.010

    Article  Google Scholar 

  65. Volpi Ghirardini A, Girardini M, Marchetto D, Pantani C (2009) Microtox® solid phase test: effect of diluent used in toxicity test. Ecotoxicol Environ Saf 72:851–861. https://doi.org/10.1016/j.ecoenv.2008.01.011

    CAS  Article  Google Scholar 

  66. Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46:339–344. https://doi.org/10.1016/S0045-6535(01)00086-8

    CAS  Article  Google Scholar 

  67. Wieczerzak M, Namieśnik J, Kudłak B (2016) Bioassays as one of the Green Chemistry tools for assessing environmental quality: a review. Environ Int 94:341–361. https://doi.org/10.1016/j.envint.2016.05.017

    CAS  Article  Google Scholar 

  68. Yang X, Ji Y, Wang F et al. (2016) Comparison of organics and heavy metals acute toxicities to Vibrio fischeri. J Serbian Chem Soc 81:697–705. https://doi.org/10.2298/JSC151124011Y

    CAS  Article  Google Scholar 

  69. Ying G-G (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431. https://doi.org/10.1016/j.envint.2005.07.004

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Environment, Land and Infrastructure Engineering (DIATI) at Polytechnic University of Turin (Daniele Peila, Carmine Todaro and Daniele Martinelli) for providing the TR values of the foaming agents. We also thank Gian Luigi Garbini, Martina Di Lenola, Laura Dejana, Francesco Di Nezio, Tommaso Mella and Tanita Pescatore (IRSA-CNR), Francesca Spataro and Nicoletta Ademollo (ISP-CNR) for assisting with the analyses.

Funding

This work was funded by the Italian Company Autostrade Spa—Project N. 100682.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Barra Caracciolo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any research using humans or (vertebrate) animals performed by any of the authors and it is in compliance with ethical standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariani, L., Grenni, P., Barra Caracciolo, A. et al. Toxic response of the bacterium Vibrio fischeri to sodium lauryl ether sulphate residues in excavated soils. Ecotoxicology 29, 815–824 (2020). https://doi.org/10.1007/s10646-020-02202-7

Download citation

Keywords

  • Anionic surfactant
  • TBM-EPB tunnelling
  • Soil re-use management
  • Site-specific protocol
  • Environmental compatibility
  • Circular economy