Ecotoxicological profiling of selected cyanobacterial strains using multi-endpoint effect-directed analysis

Abstract

The main goal of this study was to perform an ecotoxicological profiling of terrestrial and aquatic cyanobacterial strains found in different soils or in toxic cyanobacterial blooms in Vojvodina region, Serbia, using the effect-directed analysis (EDA) approach. The applied procedure was based on a series of in vitro or small-scale bioassays covering multiple endpoints in combination with advanced chemical analytical protocols. Non-selective and non-target preparation techniques were used for the extraction of a broad range of chemical compounds present in three terrestrial (Anabaena Č2, Anabaena Č5, Nostoc S8) and three aquatic (Nostoc Z1, Phormidium Z2, Oscillatoria K3) strains. Ecotoxicological endpoints addressed included evaluation of the fish cytotoxicity in vitro (acute toxicity), algal growth inhibition (chronic toxicity), and interaction with cellular detoxification mechanisms. All cyanobacterial strains tested in the 1st tier EDA showed significant effects in terms of chronic toxicity and interaction with cellular detoxification. Three major fractions of different polarities were further tested in the 2nd tier, using bioassays which showed the strongest response: induction of CYP1A1 biotransformation enzyme and inhibition of zebrafish organic anion (Oatp1d1) and cation (Oct1) uptake transporters. Oscillatoria K3 strain was selected for a more detailed 3rd tier EDA, and the obtained results revealed that positive sub-fractions possess polar anion and cation compounds that are reactive to both uptake transporters, and compounds responsible for the strongest effects have a pronounced lipophilic character. Apart from lipophilic non-polar compounds that represent typical phase I substrates, sub-fractions that contained polar substances are also shown to significantly induce CYP1A1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amé MV, Baroni MV, Galanti LN, Bocco JL, Wunderlin DA (2009) Effects of microcystin-LR on the expression of P-glycoprotein in Jenynsia multidentata. Chemosphere 74:1179–1186

    Article  CAS  Google Scholar 

  2. Bauersachs T, Compaoré J, Hopmans EC, Stal LJ, Schouten S, Sinninghe Damsté JS (2009) Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70:2034–2039

    CAS  Article  Google Scholar 

  3. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407

    CAS  Article  Google Scholar 

  4. Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, Escher BI, Mark Hewitt L, Hilscherova K, Hollender J, Hollert H, Jonker W, Kool J, Lamoree M, Muschket M, Neumann S, Rostkowski P, Ruttkies C, Schollee J, Schymanski EL, Schulze T, Seiler TB, Tindall AJ, De Aragão Umbuzeiro G, Vrana B, Krauss M (2016) Effect-directed analysis supporting monitoring of aquatic environments—an in-depth overview. Sci Total Environ 544:1073–1118

    CAS  Article  Google Scholar 

  5. Brack W, Erdinger L, Schirmer K, Hollert H (2005) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24:2445–2458

    CAS  Article  Google Scholar 

  6. Brack W, Kind T, Hollert H, Schrader S, Möder M (2003) Sequential fractionation procedure for the identification of potentially cytochrome P4501A-inducing compounds. J Chromatogr A 986:55–66

    CAS  Article  Google Scholar 

  7. Chen H, Burke E, Prepas EE (2011) Cyanobacterial toxins in fresh waters. In: Nriagu JO (ed.). Encyclopedia of environmental health. Elsevier, Amsterdam, p 860–871

    Chapter  Google Scholar 

  8. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9(1):e85140

    Article  CAS  Google Scholar 

  9. Codd GA, Lindsay J, Young FM, Morrison LF, Metcalf JS (2005) Cyanobacterial Toxins. In: Huisman J, Matthijs HCP, Visser PM (eds) Harmful Cyanobacteria. Springer-Verlag, Berlin, Germany

    Chapter  Google Scholar 

  10. Contardo-Jara V, Pflugmacher S, Wiegand C (2008) Multi-xenobiotic-resistance a possible explanation for the insensitivity of bivalves towards cyanobacterial toxins. Toxicon 52:936–943

    CAS  Article  Google Scholar 

  11. Dietrich D, Hoeger S (2005) Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharmacol 203:273–289

    CAS  Article  Google Scholar 

  12. Duy TN, Lam PKS, Shaw GR, Connell DW (2000) Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Rev Environ Contam Toxicol 163:113–186

    CAS  Google Scholar 

  13. Ehrenreich IM, Waterbury B, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71:7401–7413

    CAS  Article  Google Scholar 

  14. Elliott J (2010) The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Change Biol 16(2):864–876

    Article  Google Scholar 

  15. Faltermann S, Prétôt R, Pernthaler J, Fent K (2016) Comparative effects of nodularin and microcystin-LR in zebrafish: Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1). Aquat Toxicol 171:69–76

    CAS  Article  Google Scholar 

  16. Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203:257–263

    CAS  Article  Google Scholar 

  17. Gemma S, Molteni M, Rosetti C (2016) Lipopolysaccharides in cyanobacteria: a brief overview. Adv Microbiol 6:391–397

    CAS  Article  Google Scholar 

  18. Gerwick L, Boudreau P, Choi H, Mascuch S, Villa FA, Balunas MJ, Malloy KL, Teasdale ME, Rowley DC, Gerwick WH (2013) Interkingdom signaling by structurally related cyanobacterial and algal secondary metabolites. Phytochem Rev 12:459–465

    CAS  Article  Google Scholar 

  19. Glišić B, Mihaljević I, Popović M, Zaja R, Lončar J, Fent K, Kovačević R, Smital T (2015) Characterization of glutathione-S-transferases in zebrafish (Danio rerio). Aquat Toxicol 158:50–62

    Article  CAS  Google Scholar 

  20. Gradelet S, Astorg P, Leclerc J, Chevalier J, Vemevaut MF, Siess MH (1996b) Effects of canthaxanthin, astaxanthin, lycopene and lutein on liver xenobiotic-metabolizing enzymes in the rat. Xenobiotica 26:49–63

    CAS  Article  Google Scholar 

  21. Gradelet S, Astorg P, Leclerc J, Siess MH (1996a) P-apo-8’-carotenal, but not P-carotene, is a strong inducer of liver CYPlAl and lA2 in the rat. Xenobiotica 26:909–919

    CAS  Article  Google Scholar 

  22. Gradelet S, Astorg P, Pineau T, Canivenc MC, Siess MH, Leckrc J, Lesca P (1997) Ah receptor-dependent CYPlA induction by two carotenoids, canthaxanthin and P-apo-&carotenal, with no affinity for the TCDD binding site. Biochem Pharmacol 54:307–315

    CAS  Article  Google Scholar 

  23. Greer B, Meneely JP, Elliott CT (2018) Uptake and accumulation of Microcystin-LR based on exposure through drinking water: an animal model assessing the human health risk. Sci Rep 8:4913

    Article  CAS  Google Scholar 

  24. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  25. Hahn ME, Woodward BL, Stegeman JJ, Kennedy SW (1996) Rapid assessment of induced cytochrome P4501A protein and catalytic activity in fish hepatoma cells grown in multiwell plates-response to TCDD, TCDF, and two planar PCBs. Environ Toxicol Chem 15:582–591

    CAS  Google Scholar 

  26. ISO/FDIS 8692:2004(E). Water quality—freshwater algal growth inhibition test with unicellular green algae. ISO, Geneva, Switzerland (www.iso.org)

  27. Janssen EM (2019) Cyanobacterial peptides beyond microcystins—a review on co-occurrence, toxicity, and challenges for risk assessment. Water Res 151:488–499

    CAS  Article  Google Scholar 

  28. Keleti G, Sykora JL (1982) Production and properties of cyanobacterial endotoxins. Appl Environ Microbiol 43:104–109

    CAS  Article  Google Scholar 

  29. Kovač D (2017) Biotehnološki potencijal filamentoznih sojeva cijanobakterija sa područja Vojvodine. Doktorska disertacija, Univerzitet u Novom Sadu

  30. Kurelec B, Smital T, Pivčević B, Eufemia N, Epel D (2000) Multixenobiotic resistance, P-glycoprotein, and chemosensitisers. Ecotoxicology 9:307–327

    CAS  Article  Google Scholar 

  31. Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391

    Article  CAS  Google Scholar 

  32. Lu X, Long Y, Sun R, Zhou B, Lin L, Zhong S, Cui Z (2015) Zebrafish Abcb4 is a potential efflux transporter of microcystin-LR. Comp Biochem Physiol C Toxicol Pharmacol 167:35–42

    CAS  Article  Google Scholar 

  33. Marić P, Ahel M, Senta I, Terzić S, Mikac I, Žuljević A, Smital T (2017) Effect-directed analysis reveals inhibition of zebrafish uptake transporter Oatp1d1 by caulerpenyne, a major secondary metabolite from invasive marine algae Caulerpa taxifolia. Chemosphere 174:643–654

    Article  CAS  Google Scholar 

  34. McGorum BC, Pirie S, Glendinning L, McLachlan G, Metcalf JS, Banack SA, Cox PA, Codd GA (2015) Grazing livestock are exposed to terrestrial cyanobacteria. Vet Res 46:16

    Article  CAS  Google Scholar 

  35. Meier-Abt F, Hammann-Hanni A, Stieger B, Ballatori N, Boyer JL (2007) The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver. Toxicol Appl Pharmacol 218:274–279

    CAS  Article  Google Scholar 

  36. Mihaljević I (2015) Characterization of organic cation transporters in zebrafish (Danio rerio Hamilton, 1822). PhD Thesis

  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  Article  Google Scholar 

  38. Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763

    CAS  Article  Google Scholar 

  39. Osswald J, Carvalho AP, Guimarães L, Guilhermino L (2013) Toxic effects of pure anatoxin-a on biomarkers of rainbow trout, Oncorhynchus mykiss. Toxicon. 70:162–169

    CAS  Article  Google Scholar 

  40. Paskova V, Adamovsky O, Pikula J, Skocovska B, Bandouchova H, Horakova J, Babica P, Marsalek B, Hilscherova K (2008) Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci Total Environ 398:34–47

    CAS  Article  Google Scholar 

  41. Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg CEW (1998) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochim Biophys Acta 1425:527–533

    CAS  Article  Google Scholar 

  42. Popovic M, Zaja R, Fent K, Smital T (2013) Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion transporting polypeptide. J Biol Chem 288:33894–33911

    CAS  Article  Google Scholar 

  43. Schindler DW (1978) Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol Oceanogr 23:478–486

    Article  Google Scholar 

  44. Simeunović J (2005) Kolekcija kultura cijanobakterija (Culture Collection of Cyanobacteria). In: Andrejević K, Andrejević T (eds) Biblioteka Academia, Zadužbina Andrejević, Beograd

  45. Simeunović J (2009) Ekofiziološke karakteristike potencijalno toksičnih i toksičnih vodenih sojeva cijanobakterija na području Vojvodine. Doktorska disertacija, Univerzitet u Novom Sadu

  46. Simeunović J (2010) Cijanobakterije i cijanotoksini u površinskim vodama Vojvodine. In: Andrejević K, Andrejević T (eds) Biblioteka Dissertatio, Zadužbina Andrejević, Beograd

  47. Sivonen K, Jones G (1998) Cyanobacterial toxins. In: Toxic cyanobacterial in water: a guide to their public health consequences, monitoring, and management, chapter 1. Geneva: World Health Organization, 1999

  48. Skocovska B, Hilscherova K, Babica P, Adamovsky O, Bandouchova H, Horakova J, Knotkova Z, Marsalek B, Paskova V, Pikula J (2007) Effects of cyanobacterial biomass on the Japanese quail. Toxicon 49:793–803

    CAS  Article  Google Scholar 

  49. Smith VH (1982) The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol Oceanogr 27:1101–1111

    CAS  Article  Google Scholar 

  50. Šulčius S, Montvydienė D, Mazur-Marzec H, Kasperovičienė J, Rulevičius R, Cibulskaitė Ž (2017) The profound effect of harmful cyanobacterial blooms: From food-web and management perspectives. Sci Total Environ 609:1443–1450

    Article  CAS  Google Scholar 

  51. Svirčev Z (1992) Morfološka i ekofiziološka svojstva azotofiksirajućih filamentoznih zemljišnih cijanobakterija i mogućnost primene kao biofertilizatora. Novi Sad, PMF, Univerzitet u Novom Sadu

  52. Svirčev Z, Drobac D, Tokodi N, Vidović M, Simeunović J, Miladinov-Mikov M, Baltić V (2013) Epidemiology of primary liver cancer in Serbia and possible connection with cyanobacterial blooms. J Environ Sci Health C Environ Carcinogen Ecotoxicol Rev 31:181–200

    Article  CAS  Google Scholar 

  53. Svirčev Z, Krstić S, Miladinov-Mikov M, Baltić V, Vidović M (2009) Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:36–55

    Article  CAS  Google Scholar 

  54. Svirčev Z, Simeunović J, Subakov-Simić G, Krstić S, Vidović M (2007) Freshwater cyanobacterial blooms and cyanotoxin production in Serbia in the past 25 years. Geogr Pannon 11:32–38

    Article  Google Scholar 

  55. Takenaka S (2001) Covalent glutathione to cyanobacterial hepatotoxin microcystin-LR by F344 rat cytosolic and microsomal glutathione S-transferase. Environ Toxicol Pharmacol 9:135–139

    CAS  Article  Google Scholar 

  56. Terzic S, Ahel M (2011) Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Environ Pollut 159:555–566

    Article  CAS  Google Scholar 

  57. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447

    CAS  Article  Google Scholar 

  58. Turner AD, Dhanji-Rapkova M, O'Neill A, Coates L, Lewis A, Lewis K (2018) Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England. Toxins 10:39

    Article  CAS  Google Scholar 

  59. Udenfriend S, Stein S, Böhlen P, Dairman W, Leimgruber W, Weigele M (1972) Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178:871–872

    CAS  Article  Google Scholar 

  60. WHO (1998) Guidelines for drinking water quality. World Health Organization, Geneva

    Google Scholar 

  61. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218

    CAS  Article  Google Scholar 

  62. World Health Organization (WHO) (2003) Guidelines for safe recreational water environments: volume 1: coastal and fresh waters. WHO, Geneva, Switzerland

    Google Scholar 

  63. Zeller P, Clément M, Fessard V (2011) Similar uptake profiles of microcystin-LR and -RR in an in vitro human intestinal model. Toxicology 290:7–13

    CAS  Article  Google Scholar 

Download references

Funding

This research was funded by the SCOPES joint research project supported by Swiss National Science Foundation (SNSF) (Grant No. SCOPES—IZ73ZO_152274/1), and partially supported under the project STIM—REI, Contract Number: KK.01.1.1.01.0003, a project funded by the European Union through the European Regional Development Fund—the Operational Programme Competitiveness and Cohesion 2014–2020 (KK.01.1.1.01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Smital.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marić, P., Ahel, M., Babić, O. et al. Ecotoxicological profiling of selected cyanobacterial strains using multi-endpoint effect-directed analysis. Ecotoxicology 29, 535–550 (2020). https://doi.org/10.1007/s10646-020-02201-8

Download citation

Keywords

  • Cyanobacterial strains
  • Secondary metabolites
  • Effect-directed analysis (EDA)
  • Cellular detoxification mechanism
  • In vitro bioassays