Skip to main content
Log in

Esterase-mediated spinosad resistance in house flies Musca domestica (Diptera: Muscidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Although esterase-mediated spinosad resistance has been proposed for several insects, the associated molecular mechanism remains poorly understood. In this study, we investigated the mechanism of esterase-based spinosad resistance in house flies using a susceptible strain (SSS) and a spinosad-resistant, near-isogenic line (N-SRS). Combined with the synergistic effect of DEF on spinosad in the N-SRS strain, decreased ali-esterase activity in the spinosad-resistant strain has implicated the involvement of mutant esterase in spinosad resistance in house flies. Examination of the carboxylesterase gene MdαE7 in the two strains revealed that four non-synonymous mutations (Trp251-Leu, Asp273-Glu, Ala365-Val, and Ile396-Val) may be associated with spinosad resistance in house flies. Single nucleotide polymorphism analysis further indicated a strong relationship between these four mutations and spinosad resistance. Moreover, quantitative real-time PCR revealed a female-linked MdαE7 expression pattern in the N-SRS strain, which may contribute to sex-differential spinosad resistance in house flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  • Claudianos C, Crone E, Coppin C, Russell RJ, Oakeshott JG (2002) A genomics perspective on mutant aliesterases and metabolic resistance to organophosphates. Acs Symp Ser 808:90–101

    Article  CAS  Google Scholar 

  • Claudianos C, Russell RJ, Oakeshott JG (1999) The same amino acid substitution in orthologous esterases confers organophosphate resistance on the housefly and a blowfly. Insect Biochem Mol Biol 29:657–686

    Article  Google Scholar 

  • Devonshire AL, Heidari R, Bell KL, Campbell PM, Campbell BE, Odgers WA et al. (2003) Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Pestic Biochem Physiol 76:1–13

    Article  CAS  Google Scholar 

  • Dong K, Scott JG (1994) Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroaches (Blattella germanica). Insect Biochem Mol Biol 24:647–654

    Article  CAS  Google Scholar 

  • Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ, Oakeshott JG et al. (2004) Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem Mol Biol 34:353–363

    Article  CAS  Google Scholar 

  • Herron GA, Gunning RV, Cottage ELA, Borzatta V, Gobbi C (2014) Spinosad resistance, esterase isoenzymes and temporal synergism in Frankliniella occidentalis (Pergande) in Australia. Pestic Biochem Physiol 114:32–37

    Article  CAS  Google Scholar 

  • Højland DH, Jensen KMV, Kristensen M (2014) Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain. PLoS one 9:e103689

    Article  Google Scholar 

  • Kakani EG, Zygouridis NE, Tsoumani KT, Seraphides N, Zalom FG, Mathiopoulos KD (2010) Spinosad resistance development in wild olive fruit fly Bactrocera oleae (Diptera: Tephritidae) populations in California. Pest Manag Sci 66:447–453

    CAS  Google Scholar 

  • Kaufman PE, Scott JG, Rutz DA (2001) Monitoring insecticide resistance in house flies (Diptera: Muscidae) from New York dairies. Pest Manag Sci 57:514–521

    Article  CAS  Google Scholar 

  • Liu SS, Li ZM, Liu YQ, Feng MG, Tang ZH (2007) Promoting selection of resistance to spinosad in the parasitoid Catesia plutellae by integrating resistance of hosts to the insecticide into the selection process. Biol Control 41:246–255

    Article  Google Scholar 

  • Loughner RL, Warnock DF, Cloyd RA (2005) Resistance of greenhouse, laboratory and native populations of western flower thrips to spinosad. Hort Sci 40:146–149

    Article  Google Scholar 

  • Markussen MDK, Kristensen M (2012) Spinosad resistance in female Musca domestica L. from a field-derived population. Pest Manag Sci 68:75–82

    Article  CAS  Google Scholar 

  • Mckenzie JA, Whitten MJ, Adena MA (1982) The effect of genetic background on the fitness of the diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49:1–9

    Article  Google Scholar 

  • Oppenoorth FJ, van Asperen K (1960) Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132:298–299

    Article  CAS  Google Scholar 

  • Pavela R (2008) Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res 22:274–278

    Article  CAS  Google Scholar 

  • Rehan A, Freed S (2014) Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Prot 56:10–15

    Article  CAS  Google Scholar 

  • Reyes M, Rocha K, Alarcón L, Siegwart M, Sauphanor B (2012) Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pestic Biochem Physiol 102:45–50

    Article  CAS  Google Scholar 

  • Sabourault C, Guzov VM, Koener JF, Claudianos C, Plapp FWJ, Feyereisen R (2001) Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdaE7) gene in resistant house flies. Insect Mol Biol 10:609–618

    Article  CAS  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: Insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Scott JG (1998) Toxicity of spinosad to susceptible and resistant strains of house flies, Musca domestica. Pestic Sci 54:131–133

    Article  CAS  Google Scholar 

  • Scott JG, Alefantis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci 56:147–153

    Article  CAS  Google Scholar 

  • Scott JG, Georghiou GP (1985) Rapid development of high-level permethrin resistance in a field-collected strain of house fly (Diptera: Muscidae) under laboratory selection. J Econ Entomol 78:316–319

    Article  CAS  Google Scholar 

  • Shan C, Zhang Y, Ma Z, Gao X (2016) Inheritance of propoxur resistance in a near-isogenic line of Musca domestica (Diptera: Muscidae). J Econ Entomol 109:873–878

    Article  CAS  Google Scholar 

  • Shi J, Zhang L, Gao X (2011) Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 67:335–340

    Article  CAS  Google Scholar 

  • Shono T, Kasai S, Kamiya E, Kono Y, Scott JG (2002) Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pestic Biochem Physiol 73:27–36

    Article  CAS  Google Scholar 

  • Shono T, Scott JG (2003) Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome I. Pestic Biochem Physiol 75:1–7

    Article  CAS  Google Scholar 

  • Sparks TC, Dripps JE, Watson GB, Paroonagian D (2012) Resistance and cross-resistance to the spinosyns—a review and analysis. Pestic Biochem Physiol 102:1–10

    Article  CAS  Google Scholar 

  • Taskin V, Kence M (2004) The genetic basis of malathion resistance in housefly (Musca domestica L.) strains from Turkey. Genetika 40:1475–1482

    CAS  Google Scholar 

  • van Asperen K (1964) Biochemistry and genetics of esterases in houseflies (Musca domestica) with special reference to the development of resistance to organophosphorus compounds. Ent Exp Appl 7:205–214

    Article  Google Scholar 

  • Wang D, Qiu X, Ren X, Niu F, Wang K (2009a) Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pestic Biochem Physiol 95:90–94

    Article  CAS  Google Scholar 

  • Wang D, Qiu X, Ren X, Zhang W, Wang K (2009b) Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: tolerance status, synergism, and enzymatic responses. Pest Manag Sci 65:1040–1046

    Article  CAS  Google Scholar 

  • Wang W, Mo J, Cheng J, Zhuang P, Tang Z (2006) Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pestic Biochem Physiol 84:180–187

    Article  CAS  Google Scholar 

  • Young SJ, Gunning RV, Moores GD (2005) The effect of piperonyl butoxide on pyrethroids-resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag Sci 61:397–401

    Article  CAS  Google Scholar 

  • Zhang L, Gao X, Liang P (2007) Beta-cypermethrin resistance associated with high carboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Muscidae). Pestic Biochem Physiol 89:65–72

    Article  CAS  Google Scholar 

  • Zhang L, Shi J, Shi X, Liang P, Gao J, Gao X (2010) Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: Muscidae). Comp Biochem Physiol B Biochem Mol Biol 156:6–11

    Article  Google Scholar 

  • Zhang Y, Li J, Ma Z, Shan C, Gao X (2018) Multiple mutations and overexpression of the MdaE7 carboxylesterase gene associated with male-linked malathion resistance in housefly, Musca domestica (Diptera: Muscidae). Sci Rep 8:224

    Article  Google Scholar 

  • Zhang Y, Wang Y, Ma Z, Zhai D, Gao X, Shi X (2019) Cytochrome P450 monooxygenases-mediated sex-differential spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Pestic Biochem Physiol 157:178–185

    Article  CAS  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL, Thompson GD et al. (2002) Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. J Econ Entomol 95:430–436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China and the National Key Research and Development Program of China for the financial support of this study.

Funding

This study was funded by the National Natural Science Foundation of China (No. 31672045) and the National Key Research and Development Program of China (2018YFD0200408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiwu Gao or Xueyan Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, M., Ma, Z. et al. Esterase-mediated spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Ecotoxicology 29, 35–44 (2020). https://doi.org/10.1007/s10646-019-02125-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02125-y

Keywords

Navigation