Skip to main content

Advertisement

Log in

Ecotoxicity of nano-metal oxides: A case study on daphnia magna

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In Europe REACH framework directive imposes data acquisition concerning toxicity on acquatic species before the commercialization of chemicals to assess environmental risks. According to official methods, exposure tests are performed under in vitro and standardized conditions: OECD’s guideline rules external variables such as water type, feeding conditions, and exposure time. As consequence, such obtained results could be different from effects observed in natural environments. This study collects effects within 24–96 h of exposure to nano metal-oxides (ZnO, TiO2) on D. magna obtained by the exposure under standard OECD conditions comparing them with results obtained by the exposure under more similar conditions to natural environment (i.e. mixture, feeding). High doses exposure determines gas-bubble disease. Animals exposed to LC10 actively ingest nanoparticles under both fasting and feeding conditions. Furthermore, body burial by a coat of nanoparticles thicker in mixtures than in single dispersions was recorded. Furthermore, results show that: (i) effects increase over time; (ii) n-ZnO results less effective than n-TiO2 in both single dispersion, and mixture; (iii) the presence of surfactant increases toxicity of nanoparticles; (iv) immobilization is a more sensitive endpoint than mortality; (v) feeding increases test sensitiveness improving differences among treated and controls till 96 h and allowing longer exposure times than standard OECD test. As general remark, this study provides evidence that in vitro ecotoxicological results obtained under standardized OECD conditions could be significant different to animals’ responses under natural (feeding and mixtures) exposure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532

    CAS  Google Scholar 

  • Ates M, Daniels J, Arslan Z, Farah IO (2013) Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assessessment 185(4):3339–3348

    Article  CAS  Google Scholar 

  • Auffan M, Bertin D, Chaurand P, Pailles C, Dominici C, Rose J, Bottero JY, Thiery A (2013) Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. Water Res 47:3921–3930

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  CAS  Google Scholar 

  • Baumann J, Sakka Y, Bertrand C, Köser J, Filser J (2014) Adaptation of the Daphniasp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials. Environ Sci Pollut Res 21(3):2201e2213. https://doi.org/10.1007/s11356-013-2094-y

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  CAS  Google Scholar 

  • Brendelerger H (1991) Filter mesh size of cladocerans predicts retention e_ciency for bacteria. Limnol Oceanogr 36:884–894

    Article  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharm 175:191–199

    Article  CAS  Google Scholar 

  • Brunelli A, Pojana G, Callegaro S, Marcomini A (2013) Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J Nanopart Res 15:1–10

    Article  Google Scholar 

  • Chen L, Fu X, Zhang G, Zeng Y, Ren Z (2012) Influences of Temperature, pH and Turbidity on the Behavioral Responses of Daphnia magna and Japanese Medaka (Oryzias latipes) in the Biomonitor Procedia. Environ Sci 13:80–86

    CAS  Google Scholar 

  • Clemente Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AH, Fraceto LF (2013) Fish exposure to nano-TiO2 under different experimental conditions: Methodological aspects for nanoecotoxicology investigations. Sci Total Environ 463-464:647–656

    Article  CAS  Google Scholar 

  • Daphtoxkit F™ magna. 1996. Crustacean toxicity screening test for freshwater. Standard Operational Procedure. Creasel, Deinze, Belgium, p. 16. http://www.microbiotests.be/.

  • Dasari TP, Hwang HM (2013) Effect of humic acids and sunlight on the cytotoxicity of engineered zinc oxide and titanium dioxide nanoparticles to a river bacterial assemblage. J Environ Sci (China) 25:1925–1935

    Article  CAS  Google Scholar 

  • David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A (2012) Dissolution Kinetics and Solubility of ZnO Nanoparticles Followed by AGNES. J Phys Chem C 116(21):11758–11767

    Article  CAS  Google Scholar 

  • Demott WR (1982) Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol Oceanogr 27:518–527

    Article  Google Scholar 

  • Ducrotoy J-P, Mazik K (2011) Chemical Introductions to the Systems: Point Source Pollution (Persistent Chemicals). The University of Hull, Hull, UK, p 72–106. Elsevier Inc Eds

    Google Scholar 

  • Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia. NCBI Bookshelf. A service of the National Library of Medicine. National Institutes of Health, Bethesda MD

    Google Scholar 

  • EN ISO 6341 (2012) Water Quality - Determination of the Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea) - Acute Toxicity Test. International Organization forStandardization, Geneve, Switzerland

    Google Scholar 

  • Eriksson Wiklund A-K, Borjesson T, Wiklund SJ (2006) Avoidance response of sediment living amphipods to zinc pyrithione as a measure of sediment toxicity. Mar Pollut Bull 52:96–99

    Article  CAS  Google Scholar 

  • Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    Article  CAS  Google Scholar 

  • Filella M, Rellestab C, Chanudet V, Spaak P (2008) Effect of the filter feeder Daphnia on the particle size distribution of inorganic colloids in freshwaters. Water Res 42:1919–1924

    Article  CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  Google Scholar 

  • Frydkjær CK, Iversen N, Roslev P (2017) Daphnia magna: Effects of Regular and Irregular Shaped Plastic and Sorbed Phenanthrene. Bull Environ Contam Toxicol 99:655–661. https://doi.org/10.1007/s00128-017-2186-3

    Article  CAS  Google Scholar 

  • Gophen M, Geller W (1984) Filter mesh size and food particle uptake by Daphnia. Oecologia 64:408–412

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gurr J-R, Wang ASS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1-2):66–73

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–1790

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci Total Environ 466-467:1047–1059

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Schlich K, Kühnel D, Hellack B, Kaminski H, Nickel C (2018) Grouping concept for metal and metal oxide nanomaterials with regard to their ecotoxicological effects on algae, daphnids and fish embryos. NanoImpact 9:52–60

  • Jaafarzadeh N, Hashempour Y, Angali KA (2013) Acute toxicity test using cyanide on Daphnia magna by flow-through system. J Water Chem Technol 35(6). https://doi.org/10.3103/S1063455X13060076

  • Jemec A, Horvat P, Kunej U, Bele M, Kržan A (2016) Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ Pollut 219(2016):201e209. https://doi.org/10.1016/j.envpol.2016.10.037

    Article  CAS  Google Scholar 

  • Jensen TC, Hessen DO (2007) Does excess dietary carbon affect respiration of Daphnia? Oecologia 152(2):191–200

    Article  Google Scholar 

  • Jing Q, Yi Z, Lin D, Zhu L, Yang K (2013) Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant. Water Res 47:4006–4012

    Article  CAS  Google Scholar 

  • Khoshnood R, Jaafarzadeh N, Jamili S, Farshchi P, Taghavi L (2016) Nanoparticles ecotoxicity on Daphnia magna. Transylv Rev Syst Ecol Res “ Wetl Divers” 18(2):26–32

    Google Scholar 

  • Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, Harrison RM, Norford L, Britter R (2014) Ultrafine particles in cities. Environ Int 66:1–10

    Article  CAS  Google Scholar 

  • Kukka T, Greta W, Elijah JP, Akkanen J, Jussi VKK (2010) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna. Environ Toxicol Chem 29(5):1072–1078

    Google Scholar 

  • Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102

    Article  CAS  Google Scholar 

  • Liu Y, Tourbin M, Lachaize S, Guiraud P (2013) Nanoparticles in wastewaters: hazards, fate and remediation. Powder Technol 255:149–156. https://doi.org/10.1016/j.powtec.2013.08.025

    Article  CAS  Google Scholar 

  • Lightner DV, Salser BR, Wheeler RS 1974. Gas-bubble disease in the brown shrimp (Penaeus aztecus). https://doi.org/10.1016/0044-8486(74)90021-0

  • Lopes I, Baird DJ, Ribeiro R (2004) Avoidance of copper contamination by field populations of Daphnia longispina. Environ Toxicol Chem 23:1702–1708

    Article  CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx). Environ Sci Technol 41(12):4465–4470

    Article  CAS  Google Scholar 

  • Màchovà J, Faina R, Randak T, Valentova O, Steinbach C, Kroupova HK, Svobodova Z (2017) Fish death caused by gas bubble disease: A case report. Veter-ární Medína 62(4):231–237

    Article  Google Scholar 

  • Majedi SM, Kelly BC, Lee HK (2014) Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: a multiparametric analysis. J Hazard Mater 264:370–379

    Article  CAS  Google Scholar 

  • Mandrillon A, Saglio P (2007) Waterborne amitrole affects the predator –prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra). Arch Environ Contam Toxicol 53:233–240

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: A Research Strategy for Addressing Risk. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2012) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403

    Article  CAS  Google Scholar 

  • Mukherjee K, Acharya K (2018) Toxicological effect of metal oxide nanoparticles on soil and aquatic habitats. Arch Environ Contam Toxicol 75(2):175–186

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Cooperation and Development testing guidelines) guidelines for Daphnia species, acute immobilization tests: OECD guideline n. 202, 2004.

  • Ozkan Y, Ilhan A, Hasan I, Munever S (2015) Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: toxicity, morphological changes, uptake and depuration. Bull Environ Contam Toxicol 96(1):36–42

    Article  CAS  Google Scholar 

  • Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50

    Article  Google Scholar 

  • Quik JT, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279

    Article  CAS  Google Scholar 

  • Ren Z, Li Z, Ma M, Wang Z, Fu R (2009) Behavioral responses of Daphnia magna to stresses of chemicals with different toxic characteristics. Bull Environ Contam Toxicol 82:310–316

    Article  CAS  Google Scholar 

  • Renzi M, Giovani A, Focardi SE (2012) Water pollution by surfactants: fluctuations due to tourism exploitation in a lagoon ecosystem. J Environ Prot 3:1004–1009

    Article  CAS  Google Scholar 

  • Renzi M, Gurranti C (2015) Ecotoxicity of nanoparticles in aquatic environments: a review based on multivariate statistics of meta-data. J Environ Anal Chem 2(4):149

    Google Scholar 

  • Renzi M, Perra G, Guerranti C, Franchi E, Focardi S (2009) Abatement efficiency of municipal wastewater treatment plants using different technologies (Orbetello Lagoon, Italy). Int J Environ Health 3(1):58–70

    Article  CAS  Google Scholar 

  • Reynaldi S, Duquesne S, Jung K, Liess M (2006) Linking feeding activity and maturation of Daphnia magna following short-term bexposure to fenvalerate. Environ Toxicol Chem 25:1826–1830

    Article  CAS  Google Scholar 

  • Rottman J, Platt LC, Sierra-Alvarez R, Shadman F (2013) Removal of TiO2 nanoparticles by porous media: Effect of filtration media and water chemistry. Chem Eng J 217:212–220

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  Google Scholar 

  • Seely CJ, Lutnesky MMF (1998) Odour induced antipredator behaviour of the water flea, Ceriodaphnia reticulata, in varying predator and prey densities. Freshw Biol 40:17–24

    Article  Google Scholar 

  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468-469:968–976

    Article  CAS  Google Scholar 

  • Sun H, Zhang X, Zhang Z, Chen Y, Crittenden JC (2009) Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. Environ Pollut 157:1165–1170

    Article  CAS  Google Scholar 

  • Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/ fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468-469:1014–1027

    Article  CAS  Google Scholar 

  • Tsai JY, Felt SA, Bouley DM, Green SL (2017) Acute and chronic outcomes of gas-bubble disease in a colony of African Clawed Frogs (Xenopus laevis). Comp Med 67(1):4–10

    CAS  Google Scholar 

  • Tao X, He Y, Zhang B, Chen Y, Hughes JB (2011) Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: Evaluation of hop frequency and accumulations under different conditions. J Environ Sci 23(2):322–329

    Article  CAS  Google Scholar 

  • Thompson TL, Yates JT (2006) Surface Science Studies of the Photoactivation of TiO2New Photochemical Processes. Chem Revew 106(10):4428–4453

    Article  CAS  Google Scholar 

  • Untersteiner H, Kahapka J, Kaiser H (2003) Behavioral response of the cladoceran Daphnia magna Straus to sublethal Copper stress – validation by image analysis. Aquat Toxicol 65:435–442

    Article  CAS  Google Scholar 

  • Wang Q, Yang Z, Yang Y, Long C, Li H (2014) A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci Total Environ 473–474:483–489

    Article  CAS  Google Scholar 

  • Warheit DB Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000Research 2018, 7(F1000 Faculty Rev): 376.

  • Weitkamp DE, Katz M (1980) A Review of Dissolved Gas Supersaturation Literature. Trans Am Fish Soc 109(6):659–702

    Article  Google Scholar 

  • Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E et al. (2009) Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO articles on mobility and reproduction of the freshwater invertebrate Daphnia magna. 76:1356–1365

  • WWC (2013) Consumer products inventory: an inventory of nanotechnology-based consumer products introduced on the market. Woodrow Wilson Center: Project on Nanotechnology, Washington DC

  • Zhu XS, Chang Y, Chen YS (2010) Toxicity and bioaccumula- tion of titanium dioxide nanoparticles in Daphnia magna. Chemosphere 78(3):209–215

    Article  CAS  Google Scholar 

  • Zhu XS, Zhu L, Chen YS, Tian SY (2009) Acute toxicities of six manufactured nanomaterials water suspensions on Daphnia magna. J Nanopart Res 11(1):67–75

    Article  CAS  Google Scholar 

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C(60)) in two aquatic species, Daphnia and fathead minnow. Marine Environ Res 62:S5–S9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monia Renzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study has no external funders, researches were completely founded by Bioscience Research Center. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renzi, M., Blašković, A. Ecotoxicity of nano-metal oxides: A case study on daphnia magna. Ecotoxicology 28, 878–889 (2019). https://doi.org/10.1007/s10646-019-02085-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02085-3

Keywords

Navigation