Skip to main content
Log in

Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

We investigated the effects of nanoscale zero-valent iron (nZVI) that has been widely used for groundwater remediation on a terrestrial crop, Medicago sativa (Alfalfa), and comprehensively addressed its development and growth in soil culture. Root lengths, chlorophyll, carbohydrate and lignin contents were compared, and no physiological phytotoxicity was observed in the plants. In the roots, using an omics-based analytical, we found evidence of OH radical-induced cell wall loosening from exposure to nZVI, resulting in increased root lengths that were approximately 1.5 times greater than those of the control. Moreover, germination index (GI) was employed to physiologically evaluate the impact of nZVI on germination and root length. In regard to chlorophyll concentration, nZVI-treated alfalfa exhibited a higher value in 20-day-old seedlings, whereas the carbohydrate and lignin contents were slightly decreased in nZVI-treated alfalfa. Additionally, evidence for translocation of nZVI into plant tissues was also found. Vibrating sample magnetometry on shoots revealed the translocation of nZVI from the root to shoot. In this study, using an edible crop as a representative model, the potential impact of reactive engineered nanomaterials that can be exposed to the ecosystem on plant is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Solaniki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 81–101

  • Fan D, O’Brien Johnson G, Tratnyek PG, Johnson RL (2016) Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environ Sci Technol 50:9558–9568

    Article  CAS  Google Scholar 

  • Dwivedi AD, Yoon H, Singh JP, Chae KH, Rho S, Hwang DS, Chang YS (2018) Uptake, distribution, and transformation of zerovalent iron nanoparticles in the edible plant Cucumis sativus. Environ Sci Technol 52:10057–10066

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  CAS  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  CAS  Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    Article  CAS  Google Scholar 

  • Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1689–1698

    Article  CAS  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Walker DJ, Clemente R, Roig A, Bernal MP (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ Pollut 122:303–312

    Article  CAS  Google Scholar 

  • Ning L, Xeujun P, Jane A (2016) A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH). Green Chem 18:5367–5376

    Article  Google Scholar 

  • An HJ, Lurie S, Greve LC, Rosenquist D, Kirmiz C, Labavitch JM, Lebrilla CB (2005) Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plat cell walls. Anal Biochem 338:71–82

    Article  CAS  Google Scholar 

  • De Varies RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Article  Google Scholar 

  • Voragen AGJ, Coenen G, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  CAS  Google Scholar 

  • Sung HJ, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanopariticulate zero-valent iron. Environ Sci Technol 39:1263–1268

    Article  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Zhu H, Bannenberg GL, Moldeus P, Shertzer HG (1994) Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol 68:582–587

    Article  CAS  Google Scholar 

  • Myhre O, Anderson JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582

    Article  CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max). Plants Environ Sci Technol 44:7315–7320

    Article  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–11165

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • Zhai G, Wlters SK, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151

    Article  CAS  Google Scholar 

  • Robards AW (1975) Plasmodesmata. Annu Rev Plant Physiol 26:13–29

    Article  Google Scholar 

  • Rastogi A, Zivcak M, Kalai HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants; recent advances and methodological challenges. Environ Sci Nano 6:41–59

    Article  CAS  Google Scholar 

  • Li H, Friml J, Grunewald W (2012) Cell polarity: stretching prevents developmental cramps. Curr Biol 22:635–637

    Article  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  Google Scholar 

  • Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24:45–57

    Article  CAS  Google Scholar 

  • Racuciu M, Creanga D (2007) THA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52:395–402

    CAS  Google Scholar 

  • Pariona N, Martinez A, Hernandez-Flores H, Clark-Tapi R (2017) Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Sci Total Environ 575:869–875

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M (2019) Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosysnthetic genes in barley (Hordeum vulgare L.). Chemosphere 226:110–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science and ICT of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwan Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, D., Seo, S.M. et al. Physiological effects of zero-valent iron nanoparticles in rhizosphere on edible crop, Medicago sativa (Alfalfa), grown in soil. Ecotoxicology 28, 869–877 (2019). https://doi.org/10.1007/s10646-019-02083-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02083-5

Keywords

Navigation