Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae

Abstract

Detoxifying enzyme mRNAs are potentially useful stress biomarkers. Glutathione S-transferase (GST) metabolises lipophilic organic contaminants and mitigates oxidative damage caused by environmental pollutants. Herein, 12 Chironomus kiiensis GSTs (CkGSTs1−6, CkGSTt1−2, CkGSTd1−2, CkGSTm1−2) were cloned and grouped into sigma, theta, delta and microsomal subclasses. Open reading frames (450−699 bp) encode 170−232 amino acid proteins with predicted molecular masses of 17.31−26.84 kDa and isoelectric points from 4.94 to 9.58. All 12 GSTs were expressed during all tested developmental stages, and 11 displayed higher expression in fourth-instar larvae than eggs. GST activity after 24 h of phenol exposure was used to estimate environmental phenol contamination. After exposure to sublethal concentrations of phenol for 48 h, expression and activity of CkGSTs were inhibited in C. kiiensis larvae. Expression of CkGSTd1−2 and CkGSTs1−2 varied with phenol concentration, indicating potential use as biomarkers for monitoring environmental phenol contamination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Van Leeuwen T (2015) Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics 16:974

    Article  CAS  Google Scholar 

  2. Booth J, Boyland E, Sims P (1961) An enzyme from rat liver catalysing conjugations with glutathione. Biochem J 79:516

    Article  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  4. Bustin SA (2002) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Google Scholar 

  5. Cao CW, Sun LL, Niu F, Liu P, Chu D, Wang ZY (2016) Effects of phenol on metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis larvae. B Entomol Res 106:73–80

    Article  CAS  Google Scholar 

  6. Cao CW, Wang ZY, Niu CY, Desneux N, Gao XW (2013) Transcriptome profiling of Chironomus kiinensis under phenol stress using Solexa sequencing technology. PLoS ONE 8:1–12

    CAS  Google Scholar 

  7. Chen X, Li HZ, You J (2015) Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: the role of bioavailability and enzymatic activities. Environ Pollut 207:138–144

    Article  CAS  Google Scholar 

  8. Chen X, Li HZ, Zhang JJ, Ding YP, You J (2016) Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression. Environ Pollut 218:1005–1013

    Article  CAS  Google Scholar 

  9. Clark AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol B 92:419–446

    Article  CAS  Google Scholar 

  10. Damásio J, Navarro-Ortega A, Tauler R, Lacorte S, Barceló D, Soares AM, López MA, Riva MC, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology 19:1084–1094

    Article  CAS  Google Scholar 

  11. Domingues I, Agra AR, Monaghan K, Soares AM, Nogueira AJ (2010) Cholinesterase and glutathione-S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination. Environ Toxicol Chem 29:5–18

    Article  CAS  Google Scholar 

  12. Durou C, Poirier L, Amiard JC, Budzinski H, Gnassia-Barelli M, Lemenach K, Peluhet L, Mouneyrac C, Roméo M, Amiard-Triquet C (2007) Biomonitoring in a clean and a multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor. Environ Pollut 148(2):445–458

    Article  CAS  Google Scholar 

  13. Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8

    Article  CAS  Google Scholar 

  14. Enayati AA, Vontas JG, Small GJ, McCarroll L, Hemingway J (2001) Quantification of pyrethroid insecticides from treated bednets using a mosquito recombinant glutathione S-transferase. Med Vet Entomol 15:58–63

    Article  CAS  Google Scholar 

  15. Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120:764–777

    Article  CAS  Google Scholar 

  16. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    Article  CAS  Google Scholar 

  17. Herrero Ó, Planelló R, Morcillo G (2015) The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere 128:266–277

    Article  CAS  Google Scholar 

  18. Huang YF, Xu ZB, Lin XY, Feng QL, Zheng SC (2011) Structure and expression of glutathione S-transferase genes from the midgut of the Common cutworm, Spodoptera litura (Noctuidae) and their response to xenobiotic compounds and bacteria. J Insect Physiol 57:1033–1044

    Article  CAS  Google Scholar 

  19. Jager T, Hansen BH (2013) Linking survival and biomarker responses over time. Environ Toxicol Chem 32:1842–1845

    Article  CAS  Google Scholar 

  20. Jemec A, Drobne D, Tišler T, Sepčić K (2010) Biochemical biomarkers in environmental studies-Lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Pollut Res Int 17:51171–51181

    Article  CAS  Google Scholar 

  21. Jing TX, Wu YX, Li T, Wei DD, Smagghe G, Wang JJ (2017) Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest, Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae). Comp Biochem Physiol B Biochem Mol Biol 206:35–41

    Article  CAS  Google Scholar 

  22. Kim JH, Raisuddin S, Rhee JS, Lee YM, Han KN, Lee JS (2009) Molecular cloning, phylogenetic analysis and expression of a MAPEG superfamily gene from the pufferfish Takifugu obscurus. Comp Biochem Physiol C Toxicol Pharmacol 149:358–362

    Article  CAS  Google Scholar 

  23. Lee SB, Choi J (2007) Effects of bisphenol A and ethynyl estradiol exposure on enzyme activities, growth and development in the fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Ecotoxicol Environ Safe 68:84–90

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC T method. Methods 25:402–408

    Article  CAS  Google Scholar 

  25. Martínez-Paz P, Morales M, Martínez-Guitarte JL, Morcillo G (2012) Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae. Comp Biochem Physiol C Toxicol Pharmacol 155:333–343

    Article  CAS  Google Scholar 

  26. Morales M, Martínez-Paz P, Martín R, Planello R, Urien J, Martínez-Guitarte JL, Morcillo G (2014) Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquat Toxicol 157:1–9

    Article  CAS  Google Scholar 

  27. Morales M, Planelló R, Martínez-Paz P, Herrero O, Cortés E, Martínez-Guitarte JL, Morcillo G (2011) Characterization of Hsp70 gene in Chironomus riparius: expression in response to endocrine disrupting pollutants as a marker of ecotoxicological stress. Comp Biochem Physiol Toxicol Pharmacol 153:150–158

    Article  CAS  Google Scholar 

  28. Nair PM, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101:550–560

    Article  CAS  Google Scholar 

  29. Ozkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163

    Article  CAS  Google Scholar 

  30. Park K, Bang HW, Park J, Kwak IS (2009) Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 77:359–367

    Article  CAS  Google Scholar 

  31. Park K, Kwak IS (2008) Expression of Chironomus riparius serine-type endopeptidase gene under di (2-ethylhexyl) phthalate (DEHP) exposure. Comp Biochem Physiol Biochem Mol Biol 151:349–354

    Article  CAS  Google Scholar 

  32. Ramsey JS, Rider DS, Walsh TK, De Vos M, Gordon KH, Ponnala L, Macmil SL, Roe BA, Jander G (2010) Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol Biol 19:155–164

    Article  CAS  Google Scholar 

  33. Rhee JS, Raisuddin S, Hwang DS, Horiguchi T, Cho HS, Lee JS (2008) A Mu-class glutathione S-transferase (GSTM) from the rock shell Thais clavigera. Comp Biochem Physiol C Toxicol Pharmacol 148:195–203

    Article  CAS  Google Scholar 

  34. Rieradevall M, García-Berthou E, Prat N (1995) Chironomids in the diet of fish in Lake Banyoles (Catalonia, Spain). In: Cranston P ed. Chironomids from genes to ecosystems CSIRO, Australia, p 335–342

    Google Scholar 

  35. Samra AI, Kamita SG, Yao HW, Cornel AJ, Hammock BD (2012) Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens. Pest Manag Sci 68:764–772

    Article  CAS  Google Scholar 

  36. Shi HX, Pei LH, Gu SS, Zhu SC, Wang YY, Zhang Y, Li B (2012) Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 100:327–335

    Article  CAS  Google Scholar 

  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  39. USEPA (2009) National recommended water quality criteria. Office of Water, Office of Science and Technology, Washington, DC

    Google Scholar 

  40. Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J (2002) Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362:329–337

    Article  CAS  Google Scholar 

  41. Wang JY, McCommas S, Syvanen M (1991) Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol Gen Genet 227:260–266

    Article  CAS  Google Scholar 

  42. Weber M, Weber M, Kleine-Boymann M (2004) Phenol in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH 26:503–518

    Google Scholar 

  43. Yan LZ, Yang PC, Jiang F, Cui N, Ma EB, Qiao CL, Cui F (2012) Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families. BMC Genomics 13:609

    Article  CAS  Google Scholar 

  44. Yu QY, Lu C, Li B, Fang SM, Zuo WD, Dai FY, Zhang Z, Xiang ZH (2008) Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1158–1164

    Article  CAS  Google Scholar 

  45. Yu SJ, Huang SW (2000) Purification and characterization of glutathione S-transferases from the german cockroach, Blattella germanica (L.). Pestic Biochem Physiol 67:36–45

    Article  CAS  Google Scholar 

  46. Zhang XY, Wang JX, Zhang M, Qin GH, Li DQ, Zhu KY, Ma EB, Zhang JZ (2014) Molecular cloning, characterization and positively selected sites of the glutathione S-transferase family from Locusta migratoria. PLoS One 9:e114776

    Article  CAS  Google Scholar 

  47. Zhao GD, Zhang YL, Gao RN, Wang RX, Zhang T, Li B, Zhang Y, Lu CD, Shen WD, Wei ZG (2011) Quantitative analysis of expression of six BmGST genes in silkworm, Bombyx mori. Mol Biol Rep 38:4855–4861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (grant no. 2572016DA02), the National Natural Science Foundation of China (31570642).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chuanwang Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This species is not under regulatory body concerned with protection of wildlife of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, J., Li, X. et al. Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae. Ecotoxicology 28, 754–762 (2019). https://doi.org/10.1007/s10646-019-02071-9

Download citation

Keywords

  • Chironomus kiiensis
  • Phenol
  • Glutathione S-transferase
  • Transcription profiling
  • Metabolic activity
  • Biomarkers