Skip to main content

Advertisement

Log in

Ecotoxicity of rare earths in the marine mussel Mytilus galloprovincialis and a preliminary approach to assess environmental risk

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The increasing use of rare earth elements (REEs) in diverse technological applications has augmented the demand and exploitation of these worldwide, leading to a higher input of REEs + Yttrium (Y) in the marine environment. The present study investigated the ecotoxicity of Lanthanum (La) and Y to Mytilus galloprovincialis developing embryos and juveniles. This was achieved by quantifying the embryogenesis success after 48 h, and survival of juveniles after 96 h of exposure to different concentrations of La and Y. Results show that both La and Y are more toxic to developing embryos and larvae than to juveniles of M. galloprovincialis. Predicted no-effect concentration (PNEC) values were also derived for the embryo development as a preliminary approach to assess the environmental risk for these compounds to marine organisms. Results revealed that La is more toxic than Y. The high sensitivity of the early developmental stages to these compounds highlight the relevance of including these stages when evaluating the toxicity of chemicals where little information is available. Although older life stages may be more tolerant to toxicants, the population survival will be compromised if new recruits are not viable, with implications to the whole ecosystem health and functioning of the impacted area. Information on the ecotoxicity of chemicals with expanded technological use and that may be released during deep-sea mining activities is urgent in order to help estimate environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20:833–838. https://doi.org/10.1002/etc.5620200419

    Article  CAS  Google Scholar 

  • ASTM (2004) Standard guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve molluscs. Am Soc Testing Mater 2004:E724–E798

  • Auguste M, Mestre NC, Rocha TL, Cardoso C, Cambon-Bonavita MA, Cueff-Gauchard V et al. (2016) Development of an ecotoxicological protocol for the deep-sea fauna using the hydrothermal vent shrimp Rimicaris exoculata. Aquat Toxicol 175:277–285

    Article  CAS  Google Scholar 

  • Barry MJ, Meehan BJ (2000) The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere 41:1669–1674. https://doi.org/10.1016/S0045-6535(00)00091-6

    Article  CAS  Google Scholar 

  • Blinova I, Lukjanova A, Muna M, Vija H, Kahru A (2018) Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Sci Total Environ 642:1100–1107. https://doi.org/10.1016/j.scitotenv.2018.06.155

    Article  CAS  Google Scholar 

  • Bowmer CT, Kauffman-Van Bommel JA, Degeling C (1992) Semi-static acute toxicity test with metal-chloride salts and the marine copepod Acartia tonsa. Report No. TNO report IMW 92/342 t/m349

  • Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311. https://doi.org/10.1016/S0048-9697(99)00499-4

    Article  CAS  Google Scholar 

  • Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157. https://doi.org/10.1016/j.envint.2014.06.019

    Article  CAS  Google Scholar 

  • Hauton C, Brown AE, Thatje S, Mestre NC, Bebianno MJ, Martins I, Bettencourt R, Canals M, Sànchez-Vidal A, Shillito B, Ravaux J, Zbinden M, Duperron S, Mevenkamp L, Vanreusel A, Gambi C, Dell’Anno A, Danovarro R, Gunn V, Weaver P (2017) Identifying toxic impacts of metals potentially released during deep-sea mining–a synthesis of the challenges to quantifying risk. Front Mar Sci 4:368. https://doi.org/10.3389/fmars.2017.00368

    Article  Google Scholar 

  • Hein JR, Koschinsky A (2014) Deep-ocean ferromanganese crusts and nodules. In: Turekian HDHK (ed) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, p 273–291

    Chapter  Google Scholar 

  • Herrmann H, Nolde J, Berger S, Heise S (2016) Aquatic ecotoxicity of lanthanum–A review and an attempt to derive water and sediment quality criteria. Ecotoxicol Environ Saf 124:213–238. https://doi.org/10.1016/j.ecoenv.2015.09.033

    Article  CAS  Google Scholar 

  • Hooftman RN, Roza P, Stofberg EM (1992) Semi-static acute toxicity test with metal-chloride salts and the fish species Poecilia reticulata (OECD Guideline no. 203, 96 h). Report No. TNO IMW-R 92/361 t/m368.

  • Höss S, Henschel T, Haitzer M, Traunspurger W, Steinberg CEW (2001) Toxicity of cadmium to Caenorhabditis elegans (nematoda) in whole sediment and pore water-the ambiguous role of organic matter. Environ Toxicol Chem 20:2794–2801. https://doi.org/10.1002/etc.5620201219

    Article  Google Scholar 

  • Huang Q, Bu Q, Zhong W, Shi K, Cao Z, Yu G (2018) Derivation of aquatic predicted no-effect concentration (PNEC) for ibuprofen and sulfamethoxazole based on various toxicity endpoints and the associated risks. Chemosphere 193:223–229. https://doi.org/10.1016/j.chemosphere.2017.11.029

    Article  CAS  Google Scholar 

  • Kopf A, Camerlenghi A, Canals M, Ferdelman T, Mevel C, Pälike H et al. (2012) The deep sea and sub-seafloor frontier. White Paper of DS3F Project, A Coordination Action funded by the European Commission, 59

  • Leybourne MI, Johannesson KH (2008) Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe – Mn oxyhydroxides: fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochim Et Cosmochim Acta 72:5962–5983. https://doi.org/10.1016/j.gca.2008.09.022

    Article  CAS  Google Scholar 

  • Liang T, Zhang S, Wang L, Kung H-T, Wang Y, Hu A, Ding S (2005) Environmental biogeochemical behaviors of rare earth elements in soil–plant systems. Environ Geochem Health 27:301–311. https://doi.org/10.1007/s10653-004-5734-9

    Article  CAS  Google Scholar 

  • Libralato G, Minetto D, Totaro S, Mičetić I, Pigozzo A, Sabbioni E, Marcomini A, Volpi Ghirardini A (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res 92:71–8. https://doi.org/10.1016/j.marenvres.2013.08.015

    Article  CAS  Google Scholar 

  • Liu W, Guo M, Liu C, Yuan M, Chen X, Qiu R (2019) Chemosphere Water, sediment and agricultural soil contamination from an ion- adsorption rare earth mining area. Chemosphere 216:75–83. https://doi.org/10.1016/j.chemosphere.2018.10.109

    Article  CAS  Google Scholar 

  • Maas-Diepeveen JL, Botterweg J (1993) Milieubezwaarlijkheid van zeldzame aardmetalen (lanthaniden, yttrium, scandium) in oppervlaktewater. RIZA, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, Netherlands

    Google Scholar 

  • Mai H, Cachot J, Brune J, Geffard O, Belles A, Budzinski H, Morin B (2012) Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Mar Pollut Bull 64:2663–70. https://doi.org/10.1016/j.marpolbul.2012.10.009

    Article  CAS  Google Scholar 

  • Martino C, Chiarelli R, Bosco L, Roccheri MC (2017) Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium. Mar Environ Res 130:12–20

    Article  CAS  Google Scholar 

  • Martino C, Costa C, Roccheri MC, Koop D, Scudiero R, Byrne M (2018) Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. Aquat Toxicol 194:57–66

    Article  CAS  Google Scholar 

  • Mestre NC, Calado R, Soares AMVM (2014) Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms. Environ Pollut 185:369–371

    Article  CAS  Google Scholar 

  • Mestre NC, Rocha TL, Canals M, Cardoso C, Danovaro R, Dell’Anno A et al. (2017) Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Environ Pollut 228:169–178

    Article  CAS  Google Scholar 

  • Mestre NC, Thatje S, Tyler PA (2009) The ocean is not deep enough: pressure tolerances during early ontogeny of the blue mussel Mytilus edulis. Proc R Soc Lond B Biol Sci 276:717–726. https://doi.org/10.1098/rspb.2008.1376

    Article  Google Scholar 

  • Newman MC (1995) Quantitative methods in aquatic toxicology. CRC Press, Boca Raton

    Google Scholar 

  • Ng T, Scott Smith D, Straus A, McGreer JC (2011) Attachment 7-Review of Aquatic Effects of Lanthanides and Other Uncommon Elements. Final Project Report, EC Contribution Agreement with the CNTC for 2010/2011. Wilfrid Laurier University

  • Oral R, Bustamante P, Warnau M, D’Ambra A, Guida M, Pagano G (2010) Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere 81:194–198. https://doi.org/10.1016/j.chemosphere.2010.06.057

    Article  CAS  Google Scholar 

  • Pagano G, Guida M, Siciliano A, Oral R, Koçbaş F, Palumbo A, Castellano I, Migliaccio O, Thomas PJ, Trifuoggi M (2016) Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environ Res 147:453–460. https://doi.org/10.1016/j.envres.2016.02.031

    Article  CAS  Google Scholar 

  • Protano G, Riccobono F (2002) High contents of rare earth elements (REEs) in stream waters of a Cu–Pb–Zn mining area. Environ Pollut 117:499–514. https://doi.org/10.1016/S0269-7491(01)00173-7

    Article  CAS  Google Scholar 

  • Riget F, Johansen P, Asmund G (1996) Influence of length on element concentrations in blue mussels (Mytilus edulis). Mar Pollut Bull 32:745–751. https://doi.org/10.1016/0025-326X(96)00067-7

    Article  CAS  Google Scholar 

  • Sneller FEC, Kalf DF, Weltje L, Van Wezel AP (2000) Maximum permissible concentrations and negligible concentrations for rare earth elements (REEs). National Institute of Public Health and the Environment. RIVM Report601501011

  • Tai P, Zhao Q, Su D, Li P, Stagnitti F (2010) Biological toxicity of lanthanide elements on algae. Chemosphere 80:1031–1035. https://doi.org/10.1016/j.chemosphere.2010.05.030

    Article  CAS  Google Scholar 

  • TGD EU (2003) Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, CommissionRegulation (EC) No 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part I–IV, European Chemicals Bureau (ECB), JRC-Ispra (VA), Italy, European Commission Joint Research Centre EUR20418. https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf

  • Trifuoggi M, Pagano G, Guida M, Palumbo A, Siciliano A, Gravina M, Lyons DM, Burić P, Levak M, Thomas PJ, Giarra A, Oral R (2017) Comparative toxicity of seven rare earth elements in sea urchin early life stages. Environ Sci Pollut Res 24:20803–20810. https://doi.org/10.1007/s11356-017-9658-1

    Article  CAS  Google Scholar 

  • USEPA (1996) Ecological effects test guidelines OPPTS 850.1055 Bivalve acute toxicity test (embryo-larval). U.S. Environmental Protection Agency EPA 712–C–96–160, 7

  • USEPA (2012) Rare Earth Elements: a review of production, processing, recycling, and associated environmental issues. US Environmental Protection Agency-EPA 600/R-12/572

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Yang X, Yin D, Sun H, Wang X, Dai L, Chen Y, Cao M (1999) Distribution and bioavailability of rare earth elements in aquatic microcosm. Chemosphere 39:2443–2450. https://doi.org/10.1016/S0045-6535(99)00172-1

    Article  CAS  Google Scholar 

  • Zhang H, He X, Bai W, Guo X, Zhang Z, Chai Z et al. (2010) Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics 2:806–810. https://doi.org/10.1039/C0MT00059K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed under the MIDAS project (Managing impacts of deep-sea resource exploitation), funded by the European Commission 7th Framework Programme under the theme “Sustainable management of Europe’s deep sea and sub-seafloor resources” (Grant Agreement 603418). The authors also acknowledge the support from the Portuguese Science Foundation (FCT) through the grant UID/MAR/00350/2013 attributed to CIMA, University of Algarve and the COST-European Cooperation in Science and Technology to the TD1407: Network on Technology-Critical Elements (NOTICE)—from environmental processes to human health threats.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nélia C. Mestre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article includes the use of invertebrate Molluscs; all applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mestre, N.C., Sousa, V.S., Rocha, T.L. et al. Ecotoxicity of rare earths in the marine mussel Mytilus galloprovincialis and a preliminary approach to assess environmental risk. Ecotoxicology 28, 294–301 (2019). https://doi.org/10.1007/s10646-019-02022-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02022-4

Keywords

Navigation