Phytotoxic effects of Cu, Cd and Zn on the seagrass Thalassia hemprichii and metal accumulation in plants growing in Xincun Bay, Hainan, China

Abstract

Seagrasses play an important role in coastal marine ecosystems, but they have been increasingly threatened by human activities. In recent years, seagrass communities have rapidly degenerated in the coastal marine ecosystems of China. To identify the reasons for the decline in seagrasses, the phytotoxic effects of trace metals (Cu, Cd and Zn) on the seagrass Thalassia hemprichii were investigated, and the environmental contents of the metals were analyzed where the seagrass grows. The results showed that leaf necrosis in T. hemprichii exposed to 0.01–0.1 mg L−1 of Cu2+ for 5 days was more serious than that in plants exposed to the same concentrations of Cd2+ and Zn2+. The chlorophyll content in T. hemprichii declined in a concentration-dependent manner after 5 days of exposure to Cu2+, Cd2+ and Zn2+. The evident reduction in ΔF/Fm’ in T. hemprichii leaves was observed at day 1 of exposure to 0.01–1.0 mg L−1 of Cu2+ and at day 3 of exposure to 0.1–1.0 mg L−1 of Cd2+. The antioxidant enzyme activities (SOD, POD and CAT) in T. hemprichii leaves exposed to the three metal ions also showed significant changes. In seawater from Xincun Bay (Hainan, China), where T. hemprichii grows, Cu had reached a concentration (i.e., 0.01 mg L−1) that could significantly reduce chlorophyll content and ΔF/Fm’ in T. hemprichii leaves. Our results indicate that Cu influences the deterioration of seagrasses in Xincun Bay.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alina M, Azrina A, Mohd Yunus AS, Mohd Zakiuddin S, Mohd Izuan Effendi H, Muhammad Rizal R (2012) Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int Food Res J 19:135–140

    CAS  Google Scholar 

  2. Ambo-Rappe R (2014) Developing a methodology of bioindication of human-induced effects using seagrass morphological variation in Spermonde Archipelago, South Sulawesi, Indonesia. Mar Poll Bull 86:298–303

    Article  CAS  Google Scholar 

  3. Barwick M, Maher W (2003) Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502

    Article  CAS  Google Scholar 

  4. Bazzano A, Rivaro P, Soggia F, Ardini F, Grotti M (2014) Anthropogenic and natural sources of particulate trace elements in the coastal marine environment of Kongsfjorden, Svalbard. Mar Chem 163:28–35

    Article  CAS  Google Scholar 

  5. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  6. Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  CAS  Google Scholar 

  7. Bonanno G, Orlando-Bonaca M (2018) Trace elements in Mediterranean seagrasses and macroalgae. A review. Sci Total Environ 618:1152–1159

    Article  CAS  Google Scholar 

  8. Bonanno G, Orlando-Bonaca M (2017) Trace elements in Mediterranean seagrasses: accumulation, tolerance and biomonitoring. A review. Mar Poll Bull 125:8–18

    Article  CAS  Google Scholar 

  9. Chanu HK, Gupta A (2014) Necrosis as an adaptive response to copper toxicity in Ipomoea aquatica Forsk. and its possible application in phytoremediation. Acta Physiol Plant 36:3275–3281

    Article  CAS  Google Scholar 

  10. Chen S-Q, Wang D-R, Wu Z-J, Zhang G-X, Li Y-C, Tu Z-G, Yao H-J, Cai Z-F (2015) Discussion of the change trend of the seagrass beds in the east coast of Hainan island in nearly a decade. Mar Environ Sci 34:48–53. (In Chinese with English abstract)

    Google Scholar 

  11. Chen S, Wu Z, Chen X, Li Y, Cai Z, Zhang G, Yao H, Huang J (2015) Investigation and analysis of the distribution status of seagrass resources in the southern part of Hainan island. Acta Oceanol Sin 37:106–113. (In Chinese with English abstract)

    Google Scholar 

  12. Ciscato M, Vangronsveld J, Valcke R (1999) Effects of heavy metals on the fast chlorophyll fluorescence induction kinetics of photosystem II: a comparative study. Z Naturforsch C 54:735–739

    Article  CAS  Google Scholar 

  13. Clijsters H, Van AF (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  Google Scholar 

  14. De MS, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Poll Bull 49:410–424

    Article  CAS  Google Scholar 

  15. Duarte CM (1999) Seagrass ecology at the turn of the millennium: challenges for the new century. Aquat Bot 65:7–20

    Article  Google Scholar 

  16. Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog 311:233–250

    Article  Google Scholar 

  17. Green EP, Short FT (2004) World atlas of seagrasses. Bot Mar 47:259–260

    Google Scholar 

  18. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  CAS  Google Scholar 

  19. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  CAS  Google Scholar 

  20. Jain CK (2004) Metal fractionation study on bed sediments of River Yamuna, India. Water Res 38:569

    Article  CAS  Google Scholar 

  21. Jiang YF, Ling J, Wang YS, Chen B, Zhang YY, Dong JD (2015) Cultivation-dependent analysis of the microbial diversity associated with the seagrass meadows in Xincun Bay, South China Sea. Ecotoxicology 24:1540–1547

    Article  CAS  Google Scholar 

  22. Lewis MA, Dantin DD, Chancy CA, Abel KC, Lewis CG (2007) Florida seagrass habitat evaluation: a comparative survey for chemical quality. Environ Poll 146:206–218

    Article  CAS  Google Scholar 

  23. Lewis MA, Devereux R (2009) Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ Toxicol Chem 28:644–661

    Article  CAS  Google Scholar 

  24. Liu S, Jiang Z, Zhang J, Wu Y, Lian Z, Huang X (2016) Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Mar Poll Bull 110:274–280

    Article  CAS  Google Scholar 

  25. Macinnis-NG CMO, Ralph PJ (2002) Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni. Mar Poll Bull 45:100–106

    Article  CAS  Google Scholar 

  26. Macinnis-Ng CMO, Ralph PJ (2004) Variations in sensitivity to copper and zinc among three isolated populations of the seagrass, Zostera Capricorn. J Exp Mar Biol Ecol 302:63–83

    Article  CAS  Google Scholar 

  27. McElroy JS, Kopsell DA (2009) Physiological role of carotenoids and other antioxidants in plants and application to turfgrass stress management. NZ J Crop Hort Sci 37:327–333

    Article  CAS  Google Scholar 

  28. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  29. Ouzounidou G (1994) Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environ Exp Bot 34:165–172

    Article  CAS  Google Scholar 

  30. Ouzounidou G (1995) Cu-ions mediated changes in growth, chlorophyll and other ion contents in a Cu-tolerant Koeleria splendens. Biol Plant 37:71–78

    Article  CAS  Google Scholar 

  31. Pagès JF, Pérez M, Romero J (2010) Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: A microcosm approach. J Exp Mar Bio Ecol 386:34–38

    Article  Google Scholar 

  32. Prange JA, Dennison WC (2000) Physiological responses of five seagrass species to trace metals. Mar Poll Bull 41:327–336

    Article  CAS  Google Scholar 

  33. Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Inter 33:576–582

    Article  CAS  Google Scholar 

  34. Roach AC, Maher W, Krikowa F (2008) Assessment of metals in fish from Lake Macquarie, New South Wales, Australia. Arch Environ Contam Toxicol 54:292–308

    Article  CAS  Google Scholar 

  35. Sánchez-Quiles D, Marbà N, Tovar-Sánchez A (2017) Trace metal accumulation in marine macrophytes: Hotspots of coastal contamination worldwide. Sci Total Environ 576:520–527

    Article  CAS  Google Scholar 

  36. Sandoval-Gil JM, Marín-Guirao L, Ruiz JM (2012) The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa. Estuar Coast Shelf Sci 115:260–271

    Article  CAS  Google Scholar 

  37. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  38. Shioi Y, Tamai H, Sasa T (1978) Effects of copper on photosynthetic electron transport systems in spinach chloroplasts. Plan Cell Physiol 19:203–209

    CAS  Google Scholar 

  39. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJ, Coles RG, Dennison WC (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971

    Article  Google Scholar 

  40. Sinha S, Sinam G, Mishra RK, Mallick S (2010) Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals. Ecotoxicol Environ Saf 73:1352–1361

    Article  CAS  Google Scholar 

  41. Timmermans KR, Hattum BV, Kraak MHS, Davids C (1989) Trace metals in a littoral foodweb: concentrations in organisms, sediment and water. Sci Total Environ 87:477–494

    Article  Google Scholar 

  42. Tupan CI, Uneputty PA (2017) Concentration of heavy metals lead (Pb) and cadmium (Cd) in water, sediment and seagrass Thalassia hemprichii in Ambon Island waters. AACL Bioflux 10:1610–1617

    Google Scholar 

  43. Unsworth RKF, Cullen LC (2010) Recognising the necessity for Indo-Pacific seagrass conservation. Conserv Lett 3:63–73

    Article  Google Scholar 

  44. Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121:453–461

    Article  CAS  Google Scholar 

  45. Vörösmarty CJ, Mcintyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR (2010) Global threats to human water security and river biodiversity. Nature 467:555

    Article  CAS  Google Scholar 

  46. van der Heide T, Smolders AJP, Rijkens BGA, van Nes EH, van Katwijk MM, Roelofs JGM (2008) Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia 158:411–419

    Article  CAS  Google Scholar 

  47. Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476

    Article  CAS  Google Scholar 

  48. Ward TJ (1989) The accumulation and effects of metals in seagrass habitats. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrmses: A treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 797–820

    Google Scholar 

  49. Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    Article  Google Scholar 

  50. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  51. Wilkes R, Bennion M, McQuaid N, Beer C, McCullough-Annett G, Colhoun K, Inger R, Morrison L (2017) Intertidal seagrass in Ireland: pressures, WFD status and an assessment of trace element contamination in intertidal habitats using Zostera noltei. Ecol Indic 82:117–130

    Article  CAS  Google Scholar 

  52. Yang D, Yang C (2009) Detection of seagrass distribution changes from 1991 to 2006 in xincun bay, hainan, with satellite remote sensing. Sensors 9:830–844

    Article  Google Scholar 

  53. Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Inter 30:769–783

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Key R&D Program of China (2017YFC1200105) and the National Natural Science Foundation of China (31570398). The study was also supported by the Guangdong Province Natural Science Foundation (2017A030313167, 2015A030311023).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Lian Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

These authors contributed equally: Jin Zheng, Xiao-Qian Gu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Gu, X., Zhang, T. et al. Phytotoxic effects of Cu, Cd and Zn on the seagrass Thalassia hemprichii and metal accumulation in plants growing in Xincun Bay, Hainan, China. Ecotoxicology 27, 517–526 (2018). https://doi.org/10.1007/s10646-018-1924-6

Download citation

Keywords

  • Chlorophyll fluorescence
  • Metals
  • Seagrass
  • Thalassia hemprichii