Skip to main content

Advertisement

Log in

Lethal and sublethal effects of metal-polluted sediments on Chironomus sancticaroli Strixino and Strixino, 1981

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The Cantareira Complex is one of the most important water supplies of the metropolitan region of São Paulo, Brazil. Previously, it was demonstrated that the sediments in this complex were polluted with metals and that Paiva Castro Reservoir—the last reservoir in the sequence, which receives water from the five previous reservoirs—was the reservoir with the greatest concentration of pollutants. Based on field data, it was noticed that copper concentrations in sediments were related to morphological alterations in chironomids. The present study provides novel monitoring methods and results for the complex by isolating the environmental and biological sources of variation. An adaptation of the in situ assay proposed by Soares et al. (Arch Environ Contam Toxicol 49:163–172, 2005), which uses a native tropical Chironomus species and low-cost materials, is also provided. The aim of this study was to isolate the effects of sediments from Paiva Castro on controlled populations of C. sancticaroli larvae using an in situ assay. A seven-day experiment was performed in triplicate. Third instar larvae were inoculated in chambers containing sediments from two distinct regions of Paiva Castro reservoir and a control site with sand. Five biological responses were considered: mouthpart alterations, larval length, width of cephalic capsule, mortality and total damage. The results suggest the effects of sediment toxicity on larvae include a reduction in length and a higher occurrence of total damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beghelli FGS, Pompêo MLM, Watanabe CH, Rosa AH, Moschini-Carlos V (2014) Caracterização e análise de metais nos sedimentos da região litorânea de represas do Sistema Cantareira/SP. In: Rino, CAF (ed.) (coord). Anais do V Congresso Brasileiro de Gestão Ambiental. Belo Horizonte, MG, pp. VIII 1–5. http://www.ibeas.org.br/congresso/anais.htm

  • Beghelli FGS, Pompêo MLM, Rosa AH, Moschini-Carlos V (2016) Effects of copper in sediments on benthic macroinvertebrate communities in tropical reservoirs. Limnetica 35:103–116

    Google Scholar 

  • Betinetti R, Ponti B, Marziali R, Rossaro B (2012) Biomonitoring of lake sediments using benthic macroinvertebrates. Trends Anal Chem 36:92–102

    Article  Google Scholar 

  • Bird GA (1994) Use of chironomid deformities to assess environmental degradation in the Yamaska river, Quebec. Environ Monit Assess 30:163–175

    Article  CAS  Google Scholar 

  • Bird GA (1996) Deformities in cultured Chironomus tentans larvae and the influence of substrate on growth, survival and mentum wear. Environ Monit Assess 45:273–283

    Article  Google Scholar 

  • Bisthoven LJ, Ollevier AVF (1998) Experimental induction of morphological deformities in Chironomus riparius larvae by chronic exposure to copper and lead. Arch Environ Contam Toxicol 35:249–256

    Article  Google Scholar 

  • Burns DC, Danzer K, Townshend A (2002) Use of the terms “recovery” and “apparent recovery” in analytical procedures. Pure Appl Chem 74:2201–2205

    Article  CAS  Google Scholar 

  • Campagna AF, Rogdrigues BK, Nogueirol RC, Verani NF, Espíndola ELG, Alleoni LRF (2013) Use of artificial sediment to assess toxicity of chromium on Chironomus xanthus, Danio rerio and Poecilia reticulate. Acta Limnol Braz 25(1):42–53. https://doi.org/10.1590/S2179-975X2013000100006

    Article  CAS  Google Scholar 

  • Campos D, Gravato C, Quintaneiro C, Soares AMVM, Pestana JLT (2016) Responses of the aquatic midge Chironomus riparius to DEET exposure. Aquat Toxicol 172:80–85

    Article  CAS  Google Scholar 

  • Canadian Council of The Ministers of The Environment (CCME) (2001) Canadian sediment quality guidelines for the protection of aquatic life. http://ceqg-rcqe.ccme.ca/en/index.html#void. Accessed 24 July 2017

  • Canadian Council of the Ministers of the Environment (CCME) (2014) Water quality guidelines for the protection of the aquatic life. http://ceqg-rcqe.ccme.ca/en/index.html#void. Accessed 24 July 2017

  • Cardoso-Silva S, Ferreira PAL, Moschini-Carlos V, Figueira RCL, Pompêo M (2016) Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ Earth Sci 75:9–25

    Article  Google Scholar 

  • Cardwell AS, Adams WJ, Gensemer RW, Nordheim E, Santore RC, Ryan AC, Stubblefield WA (2018) Chronic toxicity of aluminum, at a pH of 6, to freshwater organisms: Empirical data for the development of international regulatory standards/criteria Environ Toxicol Chem 37:36–48

    Article  CAS  Google Scholar 

  • Companhia Ambiental do Estado de São Paulo - CETESB (2015) Qualidade das águas superficiais no estado de São Paulo 2014. CETESB, São Paulo. São Paulo, Brasil. http://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2013/11/Cetesb_QualidadeAguasSuperficiais2014_ParteI_vers%C3%A3o2015_Web.pdf. Accessed 24 July 2017

  • Companhia de Saneamento Básico do Estado de São Paulo – SABESP. Governo do Estado e Sabesp iniciam captação de água da reserva técnica do Cantareira. http://site.sabesp.com.br/imprensa/noticiasdetalhe.aspx?secaoId=66eid=6245. Accessed 24 July 2017

  • Cortelezzi A, Paggi AC, Rodríguez M, Capítulo AR (2011) Taxonomic and nontaxonomic responses to ecological changes in an urban lowland stream through the use of Chironomidae (Diptera) larvae. Sci Total Environ 409:1344–1350

    Article  CAS  Google Scholar 

  • Demirak A, Yılmaz HA, Keskin F, Sahin Y, Akpolat O (2012) Investigation of heavy metal content in the suspended particulate matter and sediments of inner Gokova Bay and creeks. Environ Monit Assess 184(12):7113–7124

    Article  CAS  Google Scholar 

  • Di Veroli A, Goretti E, Paumen ML, Kraak MHS, Admiraal W (2012) Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments Environ Pollut 166:212

    Article  Google Scholar 

  • Di Veroli A, Santoro F, Pallottini M, Selvaggi R, Scardazza F, Cappelletti D, Goretti E (2014) Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies. Chemosphere 112:9–17

    Article  Google Scholar 

  • Dornfeld CB, Espíndola ELG, Fracácio R, Novelli LA (2006) Comparação de Bioensaios Laboratoriais e “in situ” utilizando Chironomus sancticaroli na avaliação da toxicidade de sedimentos do Rio Monjolinho (São Carlos, SP). J Braz Soc Ecotoxicol 1:161–165

    Article  Google Scholar 

  • Du J, Li Y, Huang ZC, You J (2014) Chronic toxicity thresholds for sediment-associated benzo[a]pyrene in the bidge (Chironomus dilutus). Arch Environ Contam Toxicol 66:370–378

    Article  CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals” – A meaningless term? (IUPAC technical repport). Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Epler JH (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources. https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/Benthos%20Reference/intro.pdf. Accessed 04 December 2017

  • Faria MS, Ré A, Malcato J, Silva PCLD, Pestana J, Agra AR, Nogueira AJA, Soares AMVM (2006) Biological and functional responses of in situ bioassays with Chironomus riparius larvae to assess river water quality and contamination. Sci Total Environ 371:125–137

    Article  CAS  Google Scholar 

  • Fonseca AL, Rocha O (2004) Laboratory cultures of native species Chironomus sancticaroli Strixino & Strixino, 1981 (Diptera-Chironomidae). Acta Limnol Bras 16:153–161

    Google Scholar 

  • Groenendijk D, Zeinstra LWM, Postma J (1998) Fluctuating asymmetry and mentum gaps in populations of the midge Chironomus riparius (Diptera: Chironomidae) from a metal contaminated river. Environ Toxicol Chem 17:1999–2005

    Article  CAS  Google Scholar 

  • Grebenjuk LP, Tomilina II (2014) Morphological deformations of hard chitinized mouthpart structures in larvae of the genusChironomus (Diptera, Chironomidae) as the Index of Organic Pollution in Freshwater Ecosystems. Inland Water Biol 7:79–91

    Article  Google Scholar 

  • Guo Y, Yang S (2016) Heavy metal enrichments in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150 years. Sci Total Environ 543:105–115

    Article  CAS  Google Scholar 

  • Hart BT (1982) Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiol 91:299–313

    Article  Google Scholar 

  • Henriques-Oliveira AL, Nessimian JL, Dorvillé LFM (2003) Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeir, Brazil. Brazilian J Biol. https://doi.org/10.1590/S1519-69842003000200012

  • Janke H, Yamada TM, Berando DAS, Botta CMR, Nascimento MRL, Mozeto AA (2011) Assessment of the acute toxicity of eutrophic sediments after the addition of calcium nitrate (Ibirité reservoir, Minas Gerais-SE Brazil): initial laboratory experiments. Braz J Biol 71:903–914

    Article  Google Scholar 

  • Jeppe KJ, Carew ME, Long SM, Lee SF, Pettigrove V, Hoffman AA (2014) Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium. Comp Biochem Physiol 162:1–6

    CAS  Google Scholar 

  • Kellar CR, Hassell KL, Long SM, Myers JH, Golding L, Rose G, Kumar A, Hoffmann AA, Pettigrove V (2014) Ecological evidence links adverse biological effects to pesticide and metal contamination in an urban Australian watershed. J Appl Ecol 51:426–439

    Article  Google Scholar 

  • Lacey R, Watzin MC, Mcintosh AW (1999) Sediment organic matter content as a confounding factor in toxicity tests with Chironomus tentans. Environ Toxicol Chem 18:231–236

    Article  CAS  Google Scholar 

  • Leite I (2014) Água do volume morto de 2ª represa do Cantareira começa a ser retirada: Captação de reserva técnica na Atibainha já era planejada, afirma Sabesp. Sistema acumula 100 dias consecutivos de queda no nível dos reservatórios. Veja. Accessed 1 Sept 2014

  • Li J, Zhou Q, Yuan G, He X, Xie P (2015) Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management. Sci Total Environ 527-528:203–210

    Article  CAS  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R: a practical guide. Wiley Blackwell, Oxford

    Book  Google Scholar 

  • Lotfi MN, Ahmed RS, El-Shatoury SA, Hanora A (2016) In situ morphological abnormalities in the mouthparts of Chironomus transvaalensis (nonbiting midges) stressing their role as bioindicators. J Entomol Zool Stud 4:1299–1305

    Google Scholar 

  • Machado NG, Nassarden DCS, Santos F, Boaventura ICG, Perrier G, Souza FSC, Martins EL, Biudes MS (2015) Chironomus larvae (Chironomidae: Diptera) as water quality indicators along an environmental gradient in a neotropical urban stream. Rev Ambient e Água 10:298–309

    Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci 106:8344–8349

    Article  CAS  Google Scholar 

  • Madden CP, Suter PJ, Nicholson BC, Austin AD (1992) Deformities in chironomid larvae as indicators of pollution (pesticide) stress. Aquat Ecol 26:551–557

    Article  Google Scholar 

  • Martinez EA, Moore BC, Schaumloffel J, Dasgupta N (2002) The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Arch Environ Contam Toxicol 42:286–291

    Article  CAS  Google Scholar 

  • Martins MVA, Mane MA, Frontalini F, Santos JF, da Silva FS, Terroso D, Miranda P, Figueira R, Laut LL, Bernardes C, Filho JG, Coccioni R, Dias JM, Rocha F (2015) Early diagenesis and clay mineral adsorption as driving factors of metal pollution in sediments: the case of Aveiro Lagoon (Portugal). Environ Sci Pollut Reserv Intern 22:19–33

    Google Scholar 

  • Moreira-Santos M, Fonseca AL, Moreira SM, Osten JR, Silva EM, Soares AMV, Guilhermino L, Ribeiro R (2005) Short-term sublethal (sediment and aquatic roots of floating macrophytes) assays with a tropical chironomid based on postexposure feeding and biomarkers. Environ Toxicol Chem 24:2234–2242

    Article  CAS  Google Scholar 

  • Mozeto AA, Umbuzeiro GA, Jardim WF (2006) Métodos de coleta, análises físico-químicas e ensaios biológicos e ecotoxicológicos de sedimentos de água doce. Cubo Multimídia, São Carlos

    Google Scholar 

  • Nikinmaa M (2014) An introduction to aquatic toxicology. Elsevier Inc, Oxford

  • Odume ON, Muller WJ, Palmer CG, Arimoro FO (2012) Mentum deformities in Chironomidae communities as indicators of anthropogenic impacts in Swartkops River. Phys Chem Earth 50-52:140–148

    Article  Google Scholar 

  • Oliveira V, Martins R, Alves R (2010) Evaluation of water quality of an urban stream in southeastern Brazil using Chironomidae larvae (Insecta: Diptera). Neotrop Entomol 39:873–878

    Article  Google Scholar 

  • Park K, Park J, Kim J, Kwak I-S (2010) Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp Biochem Physiol Part C 151:439–446

    Google Scholar 

  • Pereira AMPT, Silva LJG, Meisel LM, Lino CM, Pena A (2015) Environmental impact of pharmaceuticals from Portuguese wastewaters: Geographical and seasonal occurrence, removal and risk assessment. Environ Res 136:108–119

    Article  CAS  Google Scholar 

  • Péry ARR, Ducrot V, Mons R, Garric J (2003) Modelling toxicity and mode of action of chemicals to analyse growth and emergence tests with the midge Chironomus riparius. Aquat Toxicol 65:281–292

    Article  Google Scholar 

  • Planelló R, Servia MJ, Gómez-Sande P, Herrero Ó, Cobo F, Morcillo G (2015) Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants Environ Toxicol 30:383–395

    Article  Google Scholar 

  • Printes LB, Fernandes MN, Espíndola ELG (2011) Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicol Environ Saf 74:424–430. https://doi.org/10.1016/j.ecoenv.2010.10.033

    Article  CAS  Google Scholar 

  • Richardi VS, Vicentini M, Rebechi D, Fávaro F, Navarro-Silva MA (2015) Morpho-histological characterization of immature of the bioindicator midge Chironomus sancticaroli Strixino and Strixino (Diptera, Chironomidae). Revista Brasileira de. Entomologia 59:240–250. https://doi.org/10.1016/j.rbe.2015.07.00

    Google Scholar 

  • Roman YE, Schamphelaere AC, Nguyen LTH, Janssen LT (2007) Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: Sensitivity comparison and preliminary risk assessment. Sci Total Environ 387:128–140

    Article  CAS  Google Scholar 

  • Rousch JM, Simmons TW, Kerans BL, Smith BP (1997) Relative acute effects of low pH and high iron on the hatching and survival of the water mite (Arrenurus manubriator) and the aquatic insect (Chironomus riparius). Environ Toxicol Chem 16:2144–2150

    Article  CAS  Google Scholar 

  • Salmelin J, Vuori K-M, Hämäläinen H (2015) Inconsistency in the analysis of morphological deformities in chironomidae (insecta: diptera) larvae. Environ Toxicol Chem 34:1891–1898

    Article  CAS  Google Scholar 

  • Santos MAPF, Vicensotti J, Monteiro RTR (2007) Sensitivity of four test organisms Chironomus xanthus, Daphnia magna, Hydra attenuata and Pseudokirchneriella subcapitata) to NaCl: an alternative reference toxicant. J Braz Soc Ecotoxicol 2(3):229–236

    Article  Google Scholar 

  • Sérvia MJ, Péry ARR, Heydorff M, Garric J, Lagadic L (2006) Effects of copper on energy metabolism and larval development in the midge Chironomus riparius. Ecotoxicology 15:229–240

    Article  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young-- Sci 2:21–25

    Article  Google Scholar 

  • Singh AK, Srivastava SC, Verma P, Ansari A, Verma A (2014) Hazard assessment of metals in invasive fish species of the Yamuna River, India in relation to bioaccumulation factor and exposure concentration for human health implications. Environ Monit Assess 186:3823–3836

    Article  CAS  Google Scholar 

  • Soares S, Cativa I, Moreira-Santos M, Soares AMV, Ribeiro R (2005) A short-term sublethal in situ sediment assay with Chironomus riparius based on postexposure feeding. Arch Environ Contam Toxicol 49:163–172

    Article  CAS  Google Scholar 

  • Sprague JB (1970) Measurement of pollutant toxicity to fish. II. Util Appl bioassay Results Water Res 4:3–32

    CAS  Google Scholar 

  • Stanaway D, Haggerty R, Benner S, Flores A, Feris K (2012) Persistent metal contamination limits lotic ecosystem heterotrophic metabolism after more than 100 years of exposure: a novel application of the Resazurin Resorufin smart tracer. Environ Sci Technol 46:9862–9871

    CAS  Google Scholar 

  • Strixino G, Trivinho-Strixino S (1985) A temperatura e o desenvolvimento larval de Chironomus sancticaroli (Diptera: Chironomidae). Rev Bras De Zool 3:177–180

    Article  Google Scholar 

  • Trivinho-Strixino S, Strixino G (1982) Ciclo de vida de Chironomus sancticaroli Strixino & Strixino (Diptera: Chironomidae). Rev Bras De Èntomol 26:183–189

    Google Scholar 

  • Trivinho-Strixino S, Strixino G (1989) Observações sobre a biologia da reprodução de um quironomídeo da região Neotropical (Diptera, Chironomidae). Revista Brasileira de. Entomologia 33:207–216

    Google Scholar 

  • Trivinho-Strixino S (2011a) Chironomidae (Insecta, Diptera, Nematocera) do Estado de São Paulo, Sudeste do Brasil. Biota Neotrop 11:675–684

    Article  Google Scholar 

  • Trivinho -Strixino S (2011b) Larvas de Chironomidae: guia de identificação. UFSCar, São Carlos

    Google Scholar 

  • Tundisi JG, Matsumura T (2008) Limnologia. Oficina de textos, São Paulo

    Google Scholar 

  • United States Environmental Protection Agency - US – EPA (1996) Method 3050B: Acid digestion of sediments, sludges, and soils. https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf. Accessed 27 July 2017

  • United States Environmental Protection Agency - US – EPA (1999), USA. Appendix E: Toxicity reference values: Screening level risk assessment protocol. In: Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. US - EPA, Office of Solid Waste

  • Vogt C, Langer-Jaesrich M, Elasser O, Schmitt C, Van Dongen S, Köhler H-R, Oehlmann J, Nowak C (2012) Effects of inbreeding on mouthpart deformities of Chironomus riparius under sublethal pesticide exposure. Environ Toxicol Chem 32:423–425

    Article  Google Scholar 

  • Warwick WF, Tisdale NA (1988) Morphological deformities in Chironomus, Cryptochironomus, and Procladius larvae (Diptera: Chironomidae) from two differentially stressed sites in Tobi Lake, Saskatchewan. Can J Fish Aquat Sci 45:1123–1144

    Article  Google Scholar 

  • Wetzel RG, Likens GE (2000) Limnological analyses. Springer, New York, NY

    Book  Google Scholar 

  • Whately M, Cunha P (2007) Cantareira 2006: um olhar sobre o maior manancial de água da Região Metropolitana de São Paulo. Instituto Socioambiental, São Paulo

  • Xiao R, Bai J, Huang L, Zhang H, Cui B, Liu X (2013) Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology 22:1564–1575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Susana Trivinho-Strixino (Ph.D.) for her dedication and collaboration in reading and suggesting improvements for this work. We also thank Daniel Gomes for offering his property and installations for use during field work. The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (process numbers 2012/11890-4, 2012/16420-6, 2013/03494-4, 2013/08272-0 and 2014/22581-8) for its financial support.

Funding

This study was funded by the Fundação de Apoio à Pesquisa do Estado de São Paulo (grant numbers 2012/11890-4, 2012/16420-6, 2013/03494-4, 2013/08272-0 and 2014/22581-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Guilherme de Souza Beghelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Beghelli, F.G., Lopez-Dovál, J.C., Rosa, A.H. et al. Lethal and sublethal effects of metal-polluted sediments on Chironomus sancticaroli Strixino and Strixino, 1981. Ecotoxicology 27, 286–299 (2018). https://doi.org/10.1007/s10646-018-1894-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1894-8

Keywords

Navigation