Abstract
Despite numerous studies on cadmium (Cd) uptake and accumulation in crops, relatively little is available considering the temporal dynamic of Cd uptake and responses to stress focused on the root system. Here we highlighted the responses to Cd-induced stress in roots of two tomato genotypes contrasting in Cd-tolerance: the tolerant Pusa Ruby and the sensitive Calabash Rouge. Tomato genotypes growing in the presence of 35 μM CdCl2 exhibited a similar trend of Cd accumulation in tissues, mainly in the root system and overall plants exhibited reduction in the dry matter weight. Both genotypes showed similar trends for malondialdehyde and hydrogen peroxide accumulation with increases when exposed to Cd, being this response more pronounced in the sensitive genotype. When the antioxidant machinery is concerned, in the presence of Cd the reduced glutathione content was decreased in roots while ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) activities were increased in the presence of Cd in the tolerant genotype. Altogether these results suggest APX, GR and GST as the main players of the antioxidant machinery against Cd-induced oxidative stress.





Similar content being viewed by others
References
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
Alcântara BK, Machemer-Noonan K, Silva FG, Azevedo RA (2015) Dry priming of maize seeds reduces aluminum stress. PLoS ONE 10(12):e0145742
Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344
Alves LR, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratão PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115
Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555
Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324
Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Poll Res 22:17022–17030
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwozdz EA (2011) The message of nitric oxide in cadmium challenged plants. Plant Sci 181:612–620
Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292
Azevedo RA, Gratão PL, Monteiro CC, Carvalho RF (2012) What is new in the research on cadmium-induced stress in plants? Food Energy Secur 1:133–140
Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462
Bashri G, Prasad SM (2015) Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol Plant 37:1–14
Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR (1983) Método de análise química de plantas. IAC Bol Técnico 78:48
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34
Bianconi D, Pietrini F, Massacci A, Iannelli MA (2013) Uptake of cadmium by Lemna minor, a (hyper?) accumulator plant involved in phytoremediation applications. E3S Web of Conferences 1, Article Number 13002. https://doi.org/10.1051/e3sconf/20130113002
Blair IA (2010) Analysis of endogenous glutathione-adducts and their metabolites. Biomed Chrom 24:29–38
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
CETESB (2016) Valores orientadores para solos e águas subterrâneas no estado de São Paulo. https://www.cetesb.sp.gov.br/wp-content/uploads/sites/11/2014/12/DD-256-2016-E-Valores-Orientadores-Dioxinas-e-Furanos-2016-Intranet.pdf. Accessed 20 Mar 2017
Constantine NG, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470
Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940
Cuypers A, Vangronsveld J, Clijsters H (2001) The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 39:657–664
Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667
Ding SH, Lu QT, Zhang Y, Yang ZP, Wen XG, Zhang LX, Lu CM (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592
Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109
Egan SK, Bolger PM, Carrington CD (2007) Update of US FDA’s total diet study food list and diets. J Expo Sci Environ Epidemiol 17:573–582
Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Lannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46
Ghelfi A, Gaziola SA, Cia MC, Chabregas M, Falco MC, Kuser-Falcao PR, Azevedo RA (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280
Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930
Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008a) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro‐Tom) plants to cadmium‐induced stress. Ann Appl Biol 153:321–333
Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67:387–394
Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816
Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494
Gratão PL, Pompeu GB, Capaldi FR, Vitorello VA, Lea PJ, Azevedo RA (2008b) Antioxidant response of Nicotiana tabacum cv. bright yellow 2 cells to cadmium and nickel stress. Plant Cell Tissue Organ Cult 94:73–83
Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405
Heath RL, Packer L (1968) Photoperoxidation in isoled chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaibi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotox Environ Safe 73:1965–1974
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. In: California agricultural experiment station, Berkeley, CA, p 32
Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012, Article ID 872875, 37 pages
Jozefczak M, Keunen E, Schat H, Bliek M, Hernández LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9
Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175
Kandziora-Ciupa M, Ciepał R, Nadgórska-Socha A, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981
Kandziora-Ciupa M, Nadgórska-Socha A, Barczyk G, Ciepał R (2017) Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. Ecotoxicology 26:966–980
Khan NA, Singh SS, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444
Kraus TE, Fletcher RA, Evans RC, Pauls KP (1995) Paclobutrazol enhances tolerance to increased levels of UV-B radiation in soybean (Glycine max) seedlings. Can J Bot 73:797–806
Kubo K, Watanabe Y, Matsunaka H, Seki M, Fujita M, Kawada N, Hatta K, Nakajima T (2011) Differences in cadmium accumulation and root morphology in seedlings of Japanese wheat varieties with distinctive grain cadmium concentration. Plant Prod Sci 14:148–155
Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mat 248:228–237
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85
Li TQ, Yang XE, Lu LL, Islam E, He ZL (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mat 169:734–741
Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367
Lu ZW, Zhang Z, Su Y, Liu CF, Shi GR (2013) Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol Environ Saf 91:147–155
Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37
López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385
Medici LO, Azevedo RA, Smith RJ, Lea PJ (2004) The influence of nitrogen supply on antioxidant enzymes in plant roots. Funct Plant Biol 31:1–9
Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562
Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13
Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezotto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320
Nakano Y, Asada K (1981) Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
Nogueirol RC, Monteiro FA, Gratao PL, da Silva BKD, Azevedo RA (2016) Cadmium application in tomato: nutritional imbalance and oxidative stress. Water Air Soil Poll 227:210. https://doi.org/10.1007/s11270-016-2895-y
Nogueirol RC, Monteiro FA, Gratão PL, Borgo L, Azevedo RA (2015) Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes. Environ Monit Assess 187:73. https://doi.org/10.1007/s10661-015-4282-3
Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132
Perez-Chaca MV, Rodriguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37:1672–1687
Piotto FA, Tulmann-Neto A, Franco MR, Boaretto LF, Azevedo RA (2014) Rapid screening for selection of heavy metal-tolerant plants. Crop Breed Appl Biot 14:1–7
Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254:771–783
R (2015) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130
Sebastian A, Prasad MNV (2014) Red and blue lights induced oxidative stress tolerance promote cadmium rhizocomplexation in Oryza sativa. J Photochem Photobiol B Biol 137:135–143
Semane B, Cuypers A, Smeets K, Belleghem FV, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528
Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione-reductase in crude tissue-homogenates using 5,5′-Dithiobis(2-Nitrobenzoic acid). Anal Biochem 175:408–413
Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125
Su Y, Liu JL, Lu ZW, Wang XM, Zhang Z, Shi GR (2014) Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ Exp Bot 97:40–48
Tamas L, Mistrik I, Zelinova V (2016) Cadmium activates both diphenyleneiodonium- and rotenone-sensitive superoxide production in barley root tips. Planta 244:1277–1287
Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962
Teklić T, Lončarić Z, Kovačević V, Singh BR (2013) Metallic trace elements in cereal grain—a review: how much metal do we eat? Food Energy Secur 2:81–95
Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710
Wang H, Wang T, Ahmad I (2015) Involvement of phosphate supplies in different transcriptional regulation pathway of Oryza sativa L.’s antioxidative system in response to arsenite and cadmium stress. Ecotoxicology 24:1259–1268
Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+—hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963
Wei SH, Li YM, Zhan J, Wang SS, Zhu JG (2012) Tolerant mechanisms of Rorippa globosa (Turcz.) Thell. hyperaccumulating Cd explored from root morphology. Bioresour Technol 118:455–459
Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334
Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179
Yannarelli GG, Fernandez-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512
Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654
Funding
This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grants numbers 2009/54676-0 and 2016/14349-3). RAA also thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research fellowship (Grant number 303749/2016-4).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Borges, K.L.R., Salvato, F., Alcântara, B.K. et al. Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. Ecotoxicology 27, 245–258 (2018). https://doi.org/10.1007/s10646-017-1889-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10646-017-1889-x


