, Volume 27, Issue 1, pp 45–54 | Cite as

Mercury concentrations in bats (Chiroptera) from a gold mining area in the Peruvian Amazon

  • Mónica Moreno-BrushEmail author
  • Alejandro PortilloEmail author
  • Stefan Dominik Brändel
  • Ilse Storch
  • Marco Tschapka
  • Harald Biester


In the southeastern Peruvian Amazon, artisanal and small-scale gold mining (ASGM) is estimated to have released up to 300 tonnes of mercury (Hg) to the environment between 1995 and 2007 alone, and is claimed to be responsible for Hg concentrations above international thresholds for aquatic wildlife species. Here, we examined whether Hg concentrations in bat populations are potentially related to regional ASGM-Hg releases. We determined Hg concentrations in the fur of bats collected at three different distances from the major ASGM areas in Peru. Our findings from 204 individuals of 32 species indicate that Hg concentrations in bat fur mainly resulted from differences in feeding habits, because Hg concentrations were significantly higher in omnivorous bats than in frugivorous bats. At least in two species, populations living in ASGM-affected sites harbored higher Hg concentrations than did populations in unaffected sites. Because Hg concentrations reflect Hg dietary exposure, Hg emissions from amalgam roasting sites appear to deposit locally and enter the terrestrial food web. Although our study demonstrates that ASGM activities (and Hg point sources) increase Hg exposure in wildlife, the overall Hg concentrations reported here are relatively low. The measured Hg concentrations were below the toxicity threshold at which adverse neurological effects have been reported in rodents and mink (>10 µg g−1), and were in the range of Hg concentrations in the fur of bats from nonpoint source affected sites in other latitudes. This study emphasizes the importance of considering feeding habits when evaluating Hg concentrations in bats and other vertebrates.


Mercury Hg Gold mining Bats Amazon rainforest wildlife 



This research was partially funded by Tambopata Reserve Society (TReeS), World Wildlife Foundation (WWF-Peru), and AG Umweltgeochemie—TU Braunschweig. We are greatful for the logistic support of Servicio Nacional de Areas Protegidas por el Estado (Sernanp), Servicio Nacional Forestal y de Fauna Silvestre (Serfor), Asociación para la Investigación y Desarrollo Integral (Aider), as well as of Jose Luis Mena and Nadesna Cortes. Thanks to Katherin Bernabé, Emilio Bonifaz, Deyber Gil, Werner Pinedo, and Fredy Mollehuanca for their assistance in the field. We appreciate the guidance on the data treatment and the constructive comments of Dagmar Söndgerath, Johan Rydberg, Dania Richter, and Marta Pérez-Rodríguez that greatly helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interests.

Ethical approval

This article does not contain any studies with human participants. Capture and handling of bats were conducted under the research permit (N° 006-2015-SERNANP-JEF) obtained from the Peruvian authorities of the national protected areas (Sernanp).

Supplementary material

10646_2017_1869_MOESM1_ESM.docx (386 kb)
Supplementary Information


  1. Arata AA, Vaughn JB, Thomas ME (1967) Food habits of certain colombian bats. J Mammal 48:653–655CrossRefGoogle Scholar
  2. Asner GP, Llactayo W, Tupayachi R, Luna ER (2013) Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc Natl Acad Sci U S A. 110:18454–18459CrossRefGoogle Scholar
  3. Basu N, Scheuhammer A, Grochowina N, Klenavic K, Evans D, O’Brien M, Chan HM (2005) Effects of mercury on neurochemical receptors in wild river otters (Lontra canadensis). Environ Sci Technol 39:3585–3591CrossRefGoogle Scholar
  4. Beal SA, Jackson BP, Kelly MA, Stroup JS, Landis JD (2013) Effects of historical and modern mining on mercury deposition in southeastern Peru. Environ Sci Technol 47:12715–12720CrossRefGoogle Scholar
  5. Bernard E (2001) Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. J. Trop. Ecol. 17:2001Google Scholar
  6. Bernard E (2002) Diet, activity and reproduction of bat species (Mammalia Chiroptera) in Central Amazonia, Brazil. Rev. Bras. Zool. 19:173–188CrossRefGoogle Scholar
  7. Bose-O’Reilly S, Schierl R, Nowak D, Siebert U, William JF, Owi FT, Ir YI (2016) A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia. Environ Res 149:274–281CrossRefGoogle Scholar
  8. Bravo A, Harms KE, Emmons LH (2012) Keystone resource (Ficus) chemistry explains lick visitation by frugivorous bats. J Mammal 93:1099–1109CrossRefGoogle Scholar
  9. Bravo A, Harms KE, Stevens RD, Emmons LH (2008) Collpas: Activity hotspots for frugivorous bats (Phyllostomidae) in the Peruvian Amazon. Biotropica 40:203–210CrossRefGoogle Scholar
  10. Brooks WE, Sandoval E, Yepez MA, Howell H (2007) Peru mercury inventory 2006. U.S. Geological Survey Open-File Report 2007-1252. Accessed 19 May 2017Google Scholar
  11. Burton GV, Alley RJ, Rasmussen GL, Orton P, Cox V, Jones P, Graff D (1977) Mercury and behavior in wild mouse populations. Environ Res 14:30–34CrossRefGoogle Scholar
  12. CAMEP (Carnegie Amazon Mercury Ecosystem Project) (2013) Mercury in Madre de Dios - Mercury concentrations in fish and humans in Puerto Maldonado. Research Brief #1 [Online]. Standford: CAMEP. Accessed 19 May 2017
  13. Carrera JP (2003) Distribución de murciélagos (Chiroptera) a través de un gradiente altitudinal en las estribaciones orientales de los Andes Ecuatorianos. (Licentiate thesis). Pontificia Universidad Católica del Ecuador, Quito, EcuadorGoogle Scholar
  14. Chaves-Ulloa R, Taylor BW, Broadley HJ, Cottingham KL, Baer NA, Weathers KC, Ewing HA, Chen CY (2016) Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers. Ecol Appl 26:1771–1784CrossRefGoogle Scholar
  15. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, NJGoogle Scholar
  16. Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1:98–101CrossRefGoogle Scholar
  17. Deza Arroyo NE (1996) Mercury Accumulation in Fish from Madre de Dios, a Goldmining Area in the Amazon Basin, Perú (Master thesis). Oregon State University, Corvallis, USAGoogle Scholar
  18. Díaz MM, Aguirre LF, Barquez RM (2011) Clave de identificación de los murciélagos del cono sur de Sudamérica (Key to the bats of the Southern Cone of South America). Centro de Estudios en Biología Teórica y Aplicada, CochabambaGoogle Scholar
  19. Diringer SE, Feingold BJ, Ortiz EJ, Gallis JA, Araújo-Flores JM, Berky A, Pan WKY, Hsu-Kim H (2015) River transport of mercury from artisanal and small-scale gold mining and risks for dietary mercury exposure in Madre de Dios, Peru. Environ. Sci. Process. Impact 17:478–487CrossRefGoogle Scholar
  20. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983CrossRefGoogle Scholar
  21. Eckley CS, Hintelmann H (2006) Determination of mercury methylation potentials in the water column of lakes across Canada. Sci Total Environ 368:111–125CrossRefGoogle Scholar
  22. Engstrom DR, Fitzgerald WF, Cooke CA, Lamborg CH, Drevnick PE, Swain EB, Balogh SJ, Balcom PH (2014) Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a reevaluation from lake-sediment archives. Environ Sci Technol 48:6533–6543CrossRefGoogle Scholar
  23. Fleming TH (1988) The short-tailed fruit bat: a study in plant-animal interactions. University of Chicago Press, ChicagoGoogle Scholar
  24. Fleming TH, Hooper ET, Wilson DE (1972) Three Central American bat communities: structure, reproductive cycles, and movement patterns. Ecology 53:556–569CrossRefGoogle Scholar
  25. Gerard PD, Smith DR, Weerakkody G (1998) Limits of retrospective power analysis limits. J. Wildl. Manage. 62:801–807CrossRefGoogle Scholar
  26. Giannini NP, Kalko EKV (2004) Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos 105:209–220CrossRefGoogle Scholar
  27. Gutleb AC, Helsberg A, Mitchell C (2002) Heavy metal concentrations in fish from a pristine rainforest valley in Peru: a baseline study before the start of oil-drilling activities. Bull Environ Contam Toxicol 69:523–529CrossRefGoogle Scholar
  28. Gutleb AC, Schenck C, Staib E (1997) Giant otter (Pteronura brasiliensis) at risk? Total mercury and methylmercury levels in fish and otter scats, Peru. Ambio 26:511–514Google Scholar
  29. Heithaus ER, Fleming TH, Opler PA (1975) Foraging petterns and resource utilization in 7 species of bats in a seasonal tropical forest. Ecology 56:841–854CrossRefGoogle Scholar
  30. Helsel DR (2002) Statistics for censored environmental data using Minitab® and R, 2nd edn. Wiley, Hoboken, NJ, p 324Google Scholar
  31. Hickey MBC, Fenton MB (1996) Behavioural and thermoregulatory responses of female hoary bats, Lasiurus cinereus (Chiroptera: Vespertilionidae), to variations in prey availability. Ecoscience 3:414–422CrossRefGoogle Scholar
  32. Hickey MBC, Fenton MB, MacDonald KC, Soulliere C (2001) Trace elements in the fur of bats (Chiroptera: Vespertilionidae) from Ontario and Quebec, Canada. Bull Environ Contam Toxicol 66:699–706CrossRefGoogle Scholar
  33. Jones G, Jacobs DS, Kunz TH, Wilig MR, Racey Pa (2009) Carpe noctem: The importance of bats as bioindicators. Endanger. Species Res. 8:93–115CrossRefGoogle Scholar
  34. Kalko EKV, Handley CO, Handley D (1996) Organization, diversity, and long-term dynamics of a Neotropical bat community. In: Cody M, Smallwood J (eds) Longterm Studies in Vertebrate Communities. Academic Press, Los Angeles, p 503–553CrossRefGoogle Scholar
  35. Karouna-Renier NK, White C, Perkins CR, Schmerfeld JJ, Yates D (2014) Assessment of mitochondrial DNA damage in little brown bats (Myotis lucifugus) collected near a mercury-contaminated river. Ecotoxicology 23:1419–1429CrossRefGoogle Scholar
  36. Khan MA, Wang F (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Env Toxicol Chem 28:1567–1577CrossRefGoogle Scholar
  37. Kunz TH, Anthony ELP (1982) Age estimation and post-natal growth in the bat Myotis lucifugusitle. J Mammal 63:23–32CrossRefGoogle Scholar
  38. Lamborg CH, Fitzgerald WF, Damman AWH, Benoit JM, Balcom PH, Engstrom DR (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochem Cycles 16:51CrossRefGoogle Scholar
  39. Laperche V, Hellal J, Maury-Brachet R, Joseph B, Laporte P, Breeze D, Blanchard F (2014) Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin). Springerplus 3:519–521CrossRefGoogle Scholar
  40. Little ME, Burgess NM, Broders HG, Campbell LM (2015a) Distribution of mercury in archived fur from little brown bats across Atlantic Canada. Environ Pollut 207:52–58CrossRefGoogle Scholar
  41. Little ME, Burgess NM, Broders HG, Campbell LM (2015b) Mercury in little brown bat (Myotis lucifugus) maternity colonies and its correlation with freshwater acidity in Nova Scotia, Canada. Environ Sci Technol 49:2059–2065CrossRefGoogle Scholar
  42. Maguiña R, Amanzo J, Huamán L (2012) Dieta de murciélagos filostómidos del valle de Kosñipata, San Pedro, Cusco -Perú. Rev Peru Biol 19:159–166CrossRefGoogle Scholar
  43. Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernández J, Durango-Hernández J, Díez S (2016) Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci Total Environ 542:809–816CrossRefGoogle Scholar
  44. Meech JA, Veiga MM, Tromans D (1998) Reactivity of mercury from gold mining activities in darkwater ecosystems. Ambio 27:92–98Google Scholar
  45. Melamed R, Trigueiro FE, Villas Bôas RC (2000) The effect of humic acid on mercury solubility and complexation. Appl Organomet Chem 14:473–476CrossRefGoogle Scholar
  46. Miller CL, Watson DB, Lester BP, Howe JY, Phillips DH, He F, Liang L, Pierce EM (2015) Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils. Environ Sci Technol 49:120105–12111Google Scholar
  47. Miura T, Koyama T, Nakamura I (1978) Mercury content in museum and recent specimens of Chiroptera in Japan. Bull Environ Contam Toxicol 20:696–701CrossRefGoogle Scholar
  48. Moreno-Brush M, Rydberg J, Gamboa N, Storch I, Biester H (2016) Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon? Environ Pollut 218:150–159CrossRefGoogle Scholar
  49. Morrison DW (1978) Lunar phobia in a neotropical fruit bat, Artibeus jamaicensis (Chiroptera: Phyllostomidae). Anim Behav 26:852–855CrossRefGoogle Scholar
  50. Mosquera C, Chávez ML, Pachas VH, Moschella P (2009) Estudio diagnóstico de la actividad minera artesanal en Madre de Dios (Diagnostic Study of artisanal mining activities in Madre de Dios), Fundación Conservación Internacional, LimaGoogle Scholar
  51. Moya MI, Montaño-Centellas F, Aguirre LF, Tordoya J, Martínez J, Galarza MI (2008) Variación temporal de la quiropterofauna en un bosque de yungas en Bolivia. Mastozoología Neotrop. 15:349–357Google Scholar
  52. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  53. Nam DH, Yates D, Ardapple P, Evers DC, Schmerfeld J, Basu N (2012) Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology 21:1094–1101CrossRefGoogle Scholar
  54. Neitzel V (2002) Die Kalibration von Analysenverfahren (Teil 2) Nicht lineare Kalibrationsfunktionen (Calibration of Analytical Methods (part 2) non linear calibration functions). Chem Labor Biotech 53Google Scholar
  55. O’Shea TJ, Everette aL, Ellison LE (2001) Cyclodiene insecticide, DDE, DDT, arsenic, and mercury contamination of big brown bats (Eptesicus fuscus) foraging at a Colorado Superfund site. Arch Environ Contam Toxicol 40:112–120CrossRefGoogle Scholar
  56. Passos CJ, Mergler D, Gaspar E, Morais S, Lucotte M, Larribe F, Davidson R, De Grosbois S (2003) Eating tropical fruit reduces mercury exposure from fish consumption in the Brazilian Amazon. Environ Res 93:123–130CrossRefGoogle Scholar
  57. Passos CJS, Da Silva DS, Lemire M, Fillion M, Guimarães JRD, Lucotte M, Mergler D (2008) Daily mercury intake in fish-eating populations in the Brazilian Amazon. J Expo Sci Environ Epidemiol 18:76–87CrossRefGoogle Scholar
  58. Passos CJS, Mergler D, Fillion M, Lemire M, Mertens F, Guimarães JRD, Philibert A (2007) Epidemiologic confirmation that fruit consumption influences mercury exposure in riparian communities in the Brazilian Amazon. Environ Res 105:183–193CrossRefGoogle Scholar
  59. Ribeiro Mello MA, Menezes Schittini G, Selig P, Godoy Bergallo H (2004) A test of the effects of climate and fruiting of Piper species (Piperaceae) on reproductive patterns of the bat Carollia perspicillata (Phyllostomidae). Acta Chiropterologica 6:309–318CrossRefGoogle Scholar
  60. Roach RR, Busch S (2004) Mercury exposure aboard an ore boat. Environ Health Perspect 112:910–913CrossRefGoogle Scholar
  61. Roulet M, Lucotte M, Canuel R, Rheault I, Tran S, De Freitos Gog YG, Farella N, Souza do Vale R, Sousa Passos CJ, De Jesus da Silva E, Mergler D, Amorim M (1998) Distribution and partition of total mercury in waters of the Tapajós River Basin, Brazilian Amazon. Sci Total Environ 213:203–211Google Scholar
  62. Rowland IR, Mallett AK, Flynn J, Hargreaves RJ (1986) The effect of various dietary fibres on tissue concentration and chemical form of mercury after methylmercury exposure in mice. Arch Toxicol 59:94–98CrossRefGoogle Scholar
  63. Speir SL, Chumchal MM, Drenner RW, Cocke WG, Lewis ME, Whitt HJ (2014) Methyl mercury and stable isotopes of nitrogen reveal that a terrestrial spider has a diet of emergent aquatic insects. Environ Toxicol Chem 33:2506–2509CrossRefGoogle Scholar
  64. Steidl RJ, Hayes JP, Schauber E (1997) Statistical power analysis in wildlife research. J. Wildl. Manage. 61:270–279CrossRefGoogle Scholar
  65. Syaripuddin K, Kumar A, Sing KW, Halim MRA, Nursyereen MN, Wilson JJ (2014) Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia. Ecotoxicology 23:1164–1171Google Scholar
  66. Thies W, Kalko EKV (2004) Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos 104:362–376CrossRefGoogle Scholar
  67. Thies W, Kalko EKV, Schnitzler H-U (2006) Influence of environment and resource availability on activity patterns of Carollia castanea (Phyllostomidae) in Panama. J Mammal 87:331–338CrossRefGoogle Scholar
  68. Thies W, Kalko EKV, Schnitzler H-U (1998) The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav Ecol Sociobiol 42:397–409CrossRefGoogle Scholar
  69. Thomas L (1997) Retrospective power analysis. Conserv Biol 11:276–280CrossRefGoogle Scholar
  70. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293CrossRefGoogle Scholar
  71. UNEP (United Nations Environmental Programme) (2013) Global MercuryAssessment 2013: Sources, Emissions, Releases, and Environmental Transport. UNEP, GenevaGoogle Scholar
  72. Usman K, Habersetzer J, Subbaraj R, Gopalkrishnaswamy G, Paramanandam K (1980) Behaviour of bats during a lunar eclipse. Behav Ecol Sociobiol 7:79–81CrossRefGoogle Scholar
  73. Wada H, Yates DE, Evers DC, Taylor RJ, Hopkins WA (2010) Tissue mercury concentrations and adrenocortical responses of female big brown bats (Eptesicus fuscus) near a contaminated river. Ecotoxicology 19:1277–1284CrossRefGoogle Scholar
  74. Wobeser G, Nielsen NO, Schiefer B (1976) Mercury and Mink II. Experimental methyl mercury intoxication. Can J Comp Med 40:34–45Google Scholar
  75. Yates DE, Adams EM, Angelo SE, Evers DC, Schmerfeld J, Moore MS, Kunz TH, Divoll T, Edmonds ST, Perkins C, Taylor R, O’Driscoll NJ (2014) Mercury in bats from the northeastern United States. Ecotoxicology 23:45–55CrossRefGoogle Scholar
  76. York HA, Billings SA (2009) Stable-isotope analysis of diets of short-tailed fruit bats (Chiroptera: Phyllostomidae: Carollia). J Mammal 90:1469–1477CrossRefGoogle Scholar
  77. Zukal J, Pikula J, Bandouchova H (2015) Bats as bioindicators of heavy metal pollution: history and prospect. Mamm. Biol.-Z Saugertierkd 80:220–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Chair of Wildlife Ecology and Management, University of FreiburgFreiburgGermany
  2. 2.Institut für Geoökologie, Abt. Umweltgeochemie, Technische Universität BraunschweigBraunschweigGermany
  3. 3.Museo de Historia Natural, Universidad Nacional San Antonio Abad del Cusco, Plaza de armas S/N (Paraninfo Universitario)CuscoPeru
  4. 4.Institute of Evolutionary Ecology and Conservation Genomics, University of UlmUlmGermany
  5. 5.Smithsonian Tropical Research InstitutePanamaPanama

Personalised recommendations