Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability

Abstract

Diatoms are used as indicators of freshwater ecosystems integrity. Developing diatom-based tools to assess impact of herbicide pollution is expected by water managers. But, defining sensitivities of all species to multiple herbicides would be unattainable. The existence of a phylogenetic signal of herbicide sensitivity was shown among diatoms and should enable prediction of new species sensitivity. However, diatoms present a cryptic diversity that may lead to variation in their sensitivity to herbicides that would need to be taken into account. Using bioassays, the sensitivity to four herbicides (Atrazine, Terbutryn, Diuron, Isoproturon) was evaluated for 11 freshwater diatom taxa and intraspecific variability was assessed for two of them (Nitzschia palea and Achnanthidium spp.). Intraspecific variability of herbicide sensitivity was always smaller than interspecific variability, but intraspecific variability was more important in N. palea than in Achnanthidium spp. Indeed, one species showed no intraspecific phylogenetic signal (N. palea) whereas the other did (Achnanthidium spp.). On one hand, species boundaries are not set properly for Achnanthidium spp. which encompass several taxa. On the other hand, there is a higher phenotypic plasticity for N. palea. Finally, a phylogenetic signal of herbicide sensitivity was measured at the interspecific level, opening up prospects for setting up reliable biomonitoring tools based on sensitivity prediction, insofar as species boundaries are correctly defined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abarca N, Jahn R, Zimmermann J, Enke N (2014) Does the cosmopolitan diatom Gomphonema parvulum (Kutzing) Kutzing have a biogeography. PLoS One 9:1–18

    Article  Google Scholar 

  2. Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evolut Ecol Res 1:895–909

    Google Scholar 

  3. ASTM (1998) Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. E1218–90, American Society for Testing and Materials: Philadelphia, PA

  4. Behra R, Genoni GP, Joseph AL (1999) Effect of atrazine on growth, photosynthesis, and between-strain variability in Scenedesmus subspicatus (Chlorophyceae). Arch Environ Contam Toxicol 37:36–41

    CAS  Article  Google Scholar 

  5. Bérard A, Leboulanger C, Pelte T (1999) Tolerance of Oscillatoria limnetica Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature. Arch Environ Contam Toxicol 37:472–479

    Article  Google Scholar 

  6. Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259–271

    CAS  Article  Google Scholar 

  7. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evolut Biol 15:899–910

    Article  Google Scholar 

  8. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  Google Scholar 

  9. Bolker B, Butler M, Cowan P, Vienne D de, Eddelbuettel D, Holder M, Jombart T, Kembel S, Michonneau F, Orme D, O’Meara B, Paradis E, Regetz J, Zwickl D (2014) phylobase: Base package for phylogenetic structures and comparative data. Retrieved from http://cran.r-project.org/package=phylobase

  10. Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499

    Article  Google Scholar 

  11. Calabrese E, Baldwin L (2002) Defining hormesis. Hum Exp Toxicol 21:91–97

    CAS  Article  Google Scholar 

  12. Carew ME, Miller AD, Hoffmann A (2011) Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology 20:595–606

    CAS  Article  Google Scholar 

  13. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  14. Ector L (2011) European workshop on diatom taxonomy. Arch Hydrobiol Suppl Algol Stud 136:1–4

    Google Scholar 

  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  Article  Google Scholar 

  16. European Parliament (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union L 327

  17. Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom ‘barcode’ genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158:349–364

    CAS  Article  Google Scholar 

  18. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    CAS  Article  Google Scholar 

  19. Guénard G, Legendre P (2015) Modeling phylogenetic signals using Eigenvector maps. Package ‘MPSEM’. CRAN

  20. Guénard G, Legendre P, Peres-Neto P (2013) Phylogenetic eigenvector maps (PEM): a framework to model and predict species traits. Methods Ecol Evol 4:1120–1131

    Article  Google Scholar 

  21. Guénard G, von der Ohe PC, De Zwar D, Legendre P, Lek S (2011) Using phylogenetic information to predict species tolerances to toxic chemicals. Ecol Appl 21:3178–3190

    Article  Google Scholar 

  22. Guénard G, von der Ohe PC, Walker SC, Lek S, Legendre P (2014) Using phylogenetic information and chemical properties to predict species tolerances to pesticides. Proc R Soc B 281:20133239

    Article  Google Scholar 

  23. Gustavson K, Møhlenberg F, Schlüter L (2003) Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Arch Environ Contam Toxicol 45:48–58

    CAS  Article  Google Scholar 

  24. Hammond JI, Jones DK, Stephens PR, Relyea R (2012) Phylogeny meets ecotoxicology: evolutionary patterns of sensitivity to a common insecticide. Evolut Appl 5:593–606

    CAS  Article  Google Scholar 

  25. Hoffman G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süsswasser-benthos von Mitteleuropa. ARG Gantner Verlag KG Rugell, Germany, p 908

    Google Scholar 

  26. Hughes JC, Lund JWG (1962) The rate of growth of asterionella formosa Hass. In relation to its ecology. Archiv Für Mikrobiologie 42:117–129

    CAS  Article  Google Scholar 

  27. Hulbikova D, Ector L, Hoffmann L (2011) Examination of the type material of some diatom species related to Achnanthidium minutissimum (Kütz.) Czarn. (Bacillariophyceae). Arch Hydrobiol Suppl Algol Stud 136/137:19–43

    Google Scholar 

  28. Ivorra N, Barranguet C, Jonker M, Kraak MHS, Admiraal W (2002) Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ Pollut 116:147–157

    CAS  Article  Google Scholar 

  29. Jombart T, Dray S (2010) Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1907–1909

    CAS  Article  Google Scholar 

  30. Keck F, Bouchez A, Franc A, Rimet F (2016a) Linking phylogenetic similarity and pollution sensitivity to develop ecological assessment methods: a test with river diatoms. J Appl Ecol 53:856–864

    Article  Google Scholar 

  31. Keck F, Rimet F, Bouchez A, Franc A (2016c) phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 6(9):2774–2780

    Article  Google Scholar 

  32. Keck F, Rimet F, Franc A, Bouchez A (2016b) Phylogenetic signal in diatom ecology: perspectives for aquatic ecosystems biomonitoring. Ecol Appl 26:861–872

    Article  Google Scholar 

  33. Kelly MG, King L, Jones RI, Barker P, Jamieson BJ (2008) Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610:125–129

    Article  Google Scholar 

  34. Kelly MG, Trobajo R, Rovira L, Mann DG (2015) Characterizing the niches of two very similar Nitzschia species and implications for ecological assessment. Diatom Res 30:27–33

    Article  Google Scholar 

  35. Kermarrec L, Bouchez A, Rimet F, Humbert JF (2012) First evidence of the existence of semi-cryptic species and of a phylogeographic structure in the Gomphonema parvulumc(Kutzing) Kutzing complex (Bacillariophyta). Protist 164:686–705

    Article  Google Scholar 

  36. Kermarrec L, Franc A, Rimet F, Chaumeil P, Humbert JF, Bouchez A (2013) Next‐generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms. Mol Ecol Resour 13:607–619

    CAS  Article  Google Scholar 

  37. Kniss AR, Miller SD, Westra PH, Wilson RG (2007) Glyphosate susceptibility in common lambsquarters (Chenopodium album) is influenced by parental exposure. Weed Sci 55:572–577

    CAS  Article  Google Scholar 

  38. Kumar S, Stecher G, Tamura K (2016) Molecular evolutionary genetics analysis version7.0 for Bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  Article  Google Scholar 

  39. Larras F, Bouchez A, Rimet F, Montuelle B (2012) Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms. PLoS One 7(8):1–9

    Article  Google Scholar 

  40. Larras F, Keck F, Montuelle B, Rimet F, Bouchez A (2014) Linking diatom sensitivity to herbicides to phylogeny: a step forward for biomonitoring? Environ Sci Technol 48:1921–1930

    CAS  Article  Google Scholar 

  41. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568

    CAS  Article  Google Scholar 

  42. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003

    Article  Google Scholar 

  43. Malaj E, Guenard G, Schafer RB, von der Ohe PCAF (2016) Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals. Ecol Appl 26:1249–1259

    Article  Google Scholar 

  44. Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol 60:414–420

    Article  Google Scholar 

  45. Marcel R, Bouchez A, Rimet F (2013) Influence of herbicide contamination on diversity and ecological guilds of river diatoms. Cryptogam Algologie 34:169–183

    Article  Google Scholar 

  46. Moore DRJ, Caux PY (1997) Estimating low toxic effects. Environ Toxicol Chem 16:794–801

    CAS  Article  Google Scholar 

  47. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    CAS  Article  Google Scholar 

  48. Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756

    Article  Google Scholar 

  49. Nakov T, Ashworth M, Theriot EC (2015) Comparative analysis of the interaction between habitat and growth form in diatoms. ISME J 9:246–255

    Article  Google Scholar 

  50. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    CAS  Article  Google Scholar 

  51. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    CAS  Article  Google Scholar 

  52. Pavoine S, Ollier S, Pontier D, Chessel D (2008) Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theor Popul Biol 73:79–91

    Article  Google Scholar 

  53. Potapova M, Hamilton PB (2007) Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. J Phycol 43:561–575

    Article  Google Scholar 

  54. Poulíčková A (2008) Morphology, cytology and sexual reproduction in the aerophytic cave diatom Luticola dismutica (Bacillariophyceae). Preslia 80:87–99

    Google Scholar 

  55. R Development Core Team R (2011) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/

  56. Rimet F (2012) Recent views on river pollution and diatoms. Hydrobiologia 683:1–24

    Article  Google Scholar 

  57. Rimet F, Bouchez A (2011) Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecol Indic 11:489–499

    CAS  Article  Google Scholar 

  58. Rimet F, Bouchez A (2012) Life-forms, cell-sizes and ecological guilds of diatoms in European rivers.Knowl Manage Aquat Ecosyst 406:1–12

    Article  Google Scholar 

  59. Rimet F, Chaumeil P, Keck F, Kermarrec L, Vasselon V, Kahlert M, Franc A, Bouchez A (2016) R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring. Database 2016:1–21

    Article  Google Scholar 

  60. Rimet F, Kermarrec L, Bouchez A, Hoffmann L, Ector L, Medlin LK (2011) Molecular phylogeny of the family Bacillariaceae based on 18S rDNA sequences: focus on freshwater Nitzschia of the section Lanceolatae. Diatom Res 26:273–291

    Article  Google Scholar 

  61. Rimet F, Trobajo R, Mann DG, Kermarrec L, Franc A, Domaizon I, Bouchez A (2014) When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta). Protist 165:245–259

    Article  Google Scholar 

  62. Ritz C, Streibig J (2005) Bioassay analysis using R. J Stat Softw 12:1–20

    Article  Google Scholar 

  63. Roubeix V, Mazzella N, Schouler L, Fauvelle V, Morin S, Coste M, Delmas F, Margoum C (2011) Variations of periphytic diatom sensitivity to the herbicide diuron and relation to species distribution in a contamination gradient: implications for biomonitoring. J Environ Monit 13:1768–1774

    CAS  Article  Google Scholar 

  64. Roubeix V, Pesce S, Mazzela N, Coste M, Delmas F (2012) Variations in periphytic diatom tolerance to agricultural pesticides in a contaminated river: analysis at different diversity levels. Fresenius Environ Bull 21:2090–2094

    CAS  Google Scholar 

  65. Rovira L (2013) The ecology and taxonomy of estuarine benthic diatoms and their use as bioindicators in a highly stratified estuary (Ebra Estuary, NE Iberian Peninsula): a multidisciplinary apporach. PhD dissertation, University of Barcelona, p. 295

  66. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    CAS  Article  Google Scholar 

  67. Schmitt-Jansen M, Altenburger R (2005) Toxic effects of isoproturon on periphyton communities – a microcosm study. Estuar Coast Shelf Sci 62:539–545

    CAS  Article  Google Scholar 

  68. Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Organ Divers Evol 12:335–337

    Article  Google Scholar 

  69. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  Article  Google Scholar 

  70. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  71. Trobajo R, Clavero E, Chepurnov VA, Sabbe K, Mann DG, Ishihara S, Cox EJ (2009) Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48:443–459

    Article  Google Scholar 

  72. Trobajo R, Rovira L, Ector L, Wetzel CE, Kelly M, Mann DG (2013) Morphology and identity of some ecologically important small Nitzschia species. Diatom Res 28:37–59

    Article  Google Scholar 

  73. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. J Aquat Ecol 28:117–133

    Article  Google Scholar 

  74. Vitta J, Tuesca D, Puricelli E (2004) Widespread use of glyphosate tolerant soybean and weed community richness in Argentina. Agric Ecosyst Environ 103:621–624

    Article  Google Scholar 

  75. Wojtal AZ, Ector L, Van de Vijver B, Morales E, Blanco S, Piatek J, Smieja A (2011) The Achnanthidium minutissimum complex (Bacillariophyceae) in southern Poland. Arch Hydrobiol Suppl Algol Stud 136:211–238

    Google Scholar 

  76. Zimmermann J, Jahn R, Gemeinholzer B (2011) Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organ Divers Evol 11:173–192

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by Onema (Office National de l’Eau et des Milieux Aquatiques), INRA (Projet Innovant Comipho) and two Erasmus fundings. Elean Ghiglione, Meline Corniquel and Sonia Lacroix are thanked for their technical assistance. The paper was revised by American Editors (c).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frédéric Rimet.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This research do not involve human participants nor animals

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esteves, S., Keck, F., Almeida, S. et al. Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability. Ecotoxicology 26, 1065–1077 (2017). https://doi.org/10.1007/s10646-017-1834-z

Download citation

Keywords

  • Bacillariophyta
  • Cryptic diversity
  • Ecological assessment
  • EC50
  • Micropollutant
  • Species boundaries