Ecotoxicology

, Volume 26, Issue 8, pp 1065–1077 | Cite as

Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability

  • Sara M. Esteves
  • François Keck
  • Salomé F. P. Almeida
  • Etelvina Figueira
  • Agnès Bouchez
  • Frédéric Rimet
Article

Abstract

Diatoms are used as indicators of freshwater ecosystems integrity. Developing diatom-based tools to assess impact of herbicide pollution is expected by water managers. But, defining sensitivities of all species to multiple herbicides would be unattainable. The existence of a phylogenetic signal of herbicide sensitivity was shown among diatoms and should enable prediction of new species sensitivity. However, diatoms present a cryptic diversity that may lead to variation in their sensitivity to herbicides that would need to be taken into account. Using bioassays, the sensitivity to four herbicides (Atrazine, Terbutryn, Diuron, Isoproturon) was evaluated for 11 freshwater diatom taxa and intraspecific variability was assessed for two of them (Nitzschia palea and Achnanthidium spp.). Intraspecific variability of herbicide sensitivity was always smaller than interspecific variability, but intraspecific variability was more important in N. palea than in Achnanthidium spp. Indeed, one species showed no intraspecific phylogenetic signal (N. palea) whereas the other did (Achnanthidium spp.). On one hand, species boundaries are not set properly for Achnanthidium spp. which encompass several taxa. On the other hand, there is a higher phenotypic plasticity for N. palea. Finally, a phylogenetic signal of herbicide sensitivity was measured at the interspecific level, opening up prospects for setting up reliable biomonitoring tools based on sensitivity prediction, insofar as species boundaries are correctly defined.

Keywords

Bacillariophyta Cryptic diversity Ecological assessment EC50 Micropollutant Species boundaries 

Notes

Acknowledgements

This study was financed by Onema (Office National de l’Eau et des Milieux Aquatiques), INRA (Projet Innovant Comipho) and two Erasmus fundings. Elean Ghiglione, Meline Corniquel and Sonia Lacroix are thanked for their technical assistance. The paper was revised by American Editors (c).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This research do not involve human participants nor animals

Supplementary material

10646_2017_1834_MOESM1_ESM.xlsx (13 kb)
Supplementary Information

References

  1. Abarca N, Jahn R, Zimmermann J, Enke N (2014) Does the cosmopolitan diatom Gomphonema parvulum (Kutzing) Kutzing have a biogeography. PLoS One 9:1–18CrossRefGoogle Scholar
  2. Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evolut Ecol Res 1:895–909Google Scholar
  3. ASTM (1998) Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. E1218–90, American Society for Testing and Materials: Philadelphia, PAGoogle Scholar
  4. Behra R, Genoni GP, Joseph AL (1999) Effect of atrazine on growth, photosynthesis, and between-strain variability in Scenedesmus subspicatus (Chlorophyceae). Arch Environ Contam Toxicol 37:36–41CrossRefGoogle Scholar
  5. Bérard A, Leboulanger C, Pelte T (1999) Tolerance of Oscillatoria limnetica Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature. Arch Environ Contam Toxicol 37:472–479CrossRefGoogle Scholar
  6. Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259–271CrossRefGoogle Scholar
  7. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evolut Biol 15:899–910CrossRefGoogle Scholar
  8. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745CrossRefGoogle Scholar
  9. Bolker B, Butler M, Cowan P, Vienne D de, Eddelbuettel D, Holder M, Jombart T, Kembel S, Michonneau F, Orme D, O’Meara B, Paradis E, Regetz J, Zwickl D (2014) phylobase: Base package for phylogenetic structures and comparative data. Retrieved from http://cran.r-project.org/package=phylobase
  10. Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499CrossRefGoogle Scholar
  11. Calabrese E, Baldwin L (2002) Defining hormesis. Hum Exp Toxicol 21:91–97CrossRefGoogle Scholar
  12. Carew ME, Miller AD, Hoffmann A (2011) Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology 20:595–606CrossRefGoogle Scholar
  13. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  14. Ector L (2011) European workshop on diatom taxonomy. Arch Hydrobiol Suppl Algol Stud 136:1–4Google Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  16. European Parliament (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union L 327Google Scholar
  17. Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom ‘barcode’ genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158:349–364CrossRefGoogle Scholar
  18. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefGoogle Scholar
  19. Guénard G, Legendre P (2015) Modeling phylogenetic signals using Eigenvector maps. Package ‘MPSEM’. CRANGoogle Scholar
  20. Guénard G, Legendre P, Peres-Neto P (2013) Phylogenetic eigenvector maps (PEM): a framework to model and predict species traits. Methods Ecol Evol 4:1120–1131CrossRefGoogle Scholar
  21. Guénard G, von der Ohe PC, De Zwar D, Legendre P, Lek S (2011) Using phylogenetic information to predict species tolerances to toxic chemicals. Ecol Appl 21:3178–3190CrossRefGoogle Scholar
  22. Guénard G, von der Ohe PC, Walker SC, Lek S, Legendre P (2014) Using phylogenetic information and chemical properties to predict species tolerances to pesticides. Proc R Soc B 281:20133239CrossRefGoogle Scholar
  23. Gustavson K, Møhlenberg F, Schlüter L (2003) Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Arch Environ Contam Toxicol 45:48–58CrossRefGoogle Scholar
  24. Hammond JI, Jones DK, Stephens PR, Relyea R (2012) Phylogeny meets ecotoxicology: evolutionary patterns of sensitivity to a common insecticide. Evolut Appl 5:593–606CrossRefGoogle Scholar
  25. Hoffman G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süsswasser-benthos von Mitteleuropa. ARG Gantner Verlag KG Rugell, Germany, p 908Google Scholar
  26. Hughes JC, Lund JWG (1962) The rate of growth of asterionella formosa Hass. In relation to its ecology. Archiv Für Mikrobiologie 42:117–129CrossRefGoogle Scholar
  27. Hulbikova D, Ector L, Hoffmann L (2011) Examination of the type material of some diatom species related to Achnanthidium minutissimum (Kütz.) Czarn. (Bacillariophyceae). Arch Hydrobiol Suppl Algol Stud 136/137:19–43Google Scholar
  28. Ivorra N, Barranguet C, Jonker M, Kraak MHS, Admiraal W (2002) Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ Pollut 116:147–157CrossRefGoogle Scholar
  29. Jombart T, Dray S (2010) Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1907–1909CrossRefGoogle Scholar
  30. Keck F, Bouchez A, Franc A, Rimet F (2016a) Linking phylogenetic similarity and pollution sensitivity to develop ecological assessment methods: a test with river diatoms. J Appl Ecol 53:856–864CrossRefGoogle Scholar
  31. Keck F, Rimet F, Bouchez A, Franc A (2016c) phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 6(9):2774–2780CrossRefGoogle Scholar
  32. Keck F, Rimet F, Franc A, Bouchez A (2016b) Phylogenetic signal in diatom ecology: perspectives for aquatic ecosystems biomonitoring. Ecol Appl 26:861–872CrossRefGoogle Scholar
  33. Kelly MG, King L, Jones RI, Barker P, Jamieson BJ (2008) Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610:125–129CrossRefGoogle Scholar
  34. Kelly MG, Trobajo R, Rovira L, Mann DG (2015) Characterizing the niches of two very similar Nitzschia species and implications for ecological assessment. Diatom Res 30:27–33CrossRefGoogle Scholar
  35. Kermarrec L, Bouchez A, Rimet F, Humbert JF (2012) First evidence of the existence of semi-cryptic species and of a phylogeographic structure in the Gomphonema parvulumc(Kutzing) Kutzing complex (Bacillariophyta). Protist 164:686–705CrossRefGoogle Scholar
  36. Kermarrec L, Franc A, Rimet F, Chaumeil P, Humbert JF, Bouchez A (2013) Next‐generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms. Mol Ecol Resour 13:607–619CrossRefGoogle Scholar
  37. Kniss AR, Miller SD, Westra PH, Wilson RG (2007) Glyphosate susceptibility in common lambsquarters (Chenopodium album) is influenced by parental exposure. Weed Sci 55:572–577CrossRefGoogle Scholar
  38. Kumar S, Stecher G, Tamura K (2016) Molecular evolutionary genetics analysis version7.0 for Bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  39. Larras F, Bouchez A, Rimet F, Montuelle B (2012) Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms. PLoS One 7(8):1–9CrossRefGoogle Scholar
  40. Larras F, Keck F, Montuelle B, Rimet F, Bouchez A (2014) Linking diatom sensitivity to herbicides to phylogeny: a step forward for biomonitoring? Environ Sci Technol 48:1921–1930CrossRefGoogle Scholar
  41. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568CrossRefGoogle Scholar
  42. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003CrossRefGoogle Scholar
  43. Malaj E, Guenard G, Schafer RB, von der Ohe PCAF (2016) Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals. Ecol Appl 26:1249–1259CrossRefGoogle Scholar
  44. Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol 60:414–420CrossRefGoogle Scholar
  45. Marcel R, Bouchez A, Rimet F (2013) Influence of herbicide contamination on diversity and ecological guilds of river diatoms. Cryptogam Algologie 34:169–183CrossRefGoogle Scholar
  46. Moore DRJ, Caux PY (1997) Estimating low toxic effects. Environ Toxicol Chem 16:794–801CrossRefGoogle Scholar
  47. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23CrossRefGoogle Scholar
  48. Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756CrossRefGoogle Scholar
  49. Nakov T, Ashworth M, Theriot EC (2015) Comparative analysis of the interaction between habitat and growth form in diatoms. ISME J 9:246–255CrossRefGoogle Scholar
  50. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefGoogle Scholar
  51. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  52. Pavoine S, Ollier S, Pontier D, Chessel D (2008) Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theor Popul Biol 73:79–91CrossRefGoogle Scholar
  53. Potapova M, Hamilton PB (2007) Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. J Phycol 43:561–575CrossRefGoogle Scholar
  54. Poulíčková A (2008) Morphology, cytology and sexual reproduction in the aerophytic cave diatom Luticola dismutica (Bacillariophyceae). Preslia 80:87–99Google Scholar
  55. R Development Core Team R (2011) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/
  56. Rimet F (2012) Recent views on river pollution and diatoms. Hydrobiologia 683:1–24CrossRefGoogle Scholar
  57. Rimet F, Bouchez A (2011) Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecol Indic 11:489–499CrossRefGoogle Scholar
  58. Rimet F, Bouchez A (2012) Life-forms, cell-sizes and ecological guilds of diatoms in European rivers.Knowl Manage Aquat Ecosyst 406:1–12CrossRefGoogle Scholar
  59. Rimet F, Chaumeil P, Keck F, Kermarrec L, Vasselon V, Kahlert M, Franc A, Bouchez A (2016) R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring. Database 2016:1–21CrossRefGoogle Scholar
  60. Rimet F, Kermarrec L, Bouchez A, Hoffmann L, Ector L, Medlin LK (2011) Molecular phylogeny of the family Bacillariaceae based on 18S rDNA sequences: focus on freshwater Nitzschia of the section Lanceolatae. Diatom Res 26:273–291CrossRefGoogle Scholar
  61. Rimet F, Trobajo R, Mann DG, Kermarrec L, Franc A, Domaizon I, Bouchez A (2014) When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta). Protist 165:245–259CrossRefGoogle Scholar
  62. Ritz C, Streibig J (2005) Bioassay analysis using R. J Stat Softw 12:1–20CrossRefGoogle Scholar
  63. Roubeix V, Mazzella N, Schouler L, Fauvelle V, Morin S, Coste M, Delmas F, Margoum C (2011) Variations of periphytic diatom sensitivity to the herbicide diuron and relation to species distribution in a contamination gradient: implications for biomonitoring. J Environ Monit 13:1768–1774CrossRefGoogle Scholar
  64. Roubeix V, Pesce S, Mazzela N, Coste M, Delmas F (2012) Variations in periphytic diatom tolerance to agricultural pesticides in a contaminated river: analysis at different diversity levels. Fresenius Environ Bull 21:2090–2094Google Scholar
  65. Rovira L (2013) The ecology and taxonomy of estuarine benthic diatoms and their use as bioindicators in a highly stratified estuary (Ebra Estuary, NE Iberian Peninsula): a multidisciplinary apporach. PhD dissertation, University of Barcelona, p. 295Google Scholar
  66. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448CrossRefGoogle Scholar
  67. Schmitt-Jansen M, Altenburger R (2005) Toxic effects of isoproturon on periphyton communities – a microcosm study. Estuar Coast Shelf Sci 62:539–545CrossRefGoogle Scholar
  68. Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Organ Divers Evol 12:335–337CrossRefGoogle Scholar
  69. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  70. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  71. Trobajo R, Clavero E, Chepurnov VA, Sabbe K, Mann DG, Ishihara S, Cox EJ (2009) Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48:443–459CrossRefGoogle Scholar
  72. Trobajo R, Rovira L, Ector L, Wetzel CE, Kelly M, Mann DG (2013) Morphology and identity of some ecologically important small Nitzschia species. Diatom Res 28:37–59CrossRefGoogle Scholar
  73. Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  74. Vitta J, Tuesca D, Puricelli E (2004) Widespread use of glyphosate tolerant soybean and weed community richness in Argentina. Agric Ecosyst Environ 103:621–624CrossRefGoogle Scholar
  75. Wojtal AZ, Ector L, Van de Vijver B, Morales E, Blanco S, Piatek J, Smieja A (2011) The Achnanthidium minutissimum complex (Bacillariophyceae) in southern Poland. Arch Hydrobiol Suppl Algol Stud 136:211–238Google Scholar
  76. Zimmermann J, Jahn R, Gemeinholzer B (2011) Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organ Divers Evol 11:173–192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sara M. Esteves
    • 1
    • 2
  • François Keck
    • 1
  • Salomé F. P. Almeida
    • 2
  • Etelvina Figueira
    • 3
  • Agnès Bouchez
    • 1
  • Frédéric Rimet
    • 1
  1. 1.UMR CARRTEL, INRA, USMBThononFrance
  2. 2.Department of Biology and GeoBioSciences, GeoTechnologies and GeoEngineering Research Center (GeoBioTec)University of Aveiro, Campus de SantiagoAveiroPortugal
  3. 3.Biology Department and CESAM (Centro de Estudos do Ambiente e do Mar)University of AveiroAveiroPortugal

Personalised recommendations