Skip to main content

Advertisement

Log in

Evaluation of ecotoxicological impact of new pyrrole-derived aminophosphonates using selected bioassay battery

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Six new dimethyl N-arylamino(2-pyrrolyl)methylphosphonates 2a–f were synthesized by the modified aza-Pudovik reaction. Their ecotoxicological impact using battery of bioassay was assessed using Microtox and Ostracodtoxit tests as well as phytotoxicity towards two plants, dicotyledonous radish (Raphanus sativus) and monocotyledonous oat (Avena sativa) following the OECD 208 Guideline. Ecotoxicological properties of compounds 2a–f in aspect of acute and chronic toxicity were evaluated using Heterocypris incongruens and Aliivibrio fisheri tests. The obtained results showed that tested aminophosphonates 2a–f have moderate-to-high phyto- and ecotoxicological impact. They are toxic for both plants but more toxic against dicotyledonous. The investigated compounds showed important ecotoxicity against Heterocypris incongruens crustaceans and Aliivibrio fisheri bacteria. It was found that the substituents of the phenyl ring plays a key role in the degree of toxicity. Results showed that investigated compounds are ecologically toxic and that any of their application should be implemented with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acklin P, Allgeier H, Auberson Y, Ofner S, Veenstra SJ (2000) Substituted Aminoalkane Phosphonic Acids. US Pat 6117873

  • Bedolla-Medrano M, Hernández-Fernández E, Ordóñez lM (2014) Phenylphosphonic acid as efficient and recyclable catalyst in the synthesis of α-aminophosphonates under solvent-free conditions. Synlett 25:1145–1149. doi:10.1055/s-0033-1341069

    Article  Google Scholar 

  • Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P (2015) Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 5:15233–15266. doi:10.1039/c4ra15710a

    Article  CAS  Google Scholar 

  • Biczak R, Pawłowska B, Bałczewski P, Rychter P (2014) The role of the anion in the toxicity of imidazolium ionic liquids. J Hazard Mat 274:181–190. doi:10.1016/j.jhazmat.2014.03.021

    Article  CAS  Google Scholar 

  • Biczak R, Pawłowska B, Feder-Kubis J (2015) The phytotoxicity of ionic liquids from natural pool of (-)-menthol with tetrafluoroborate anion. Environ Sci Pollut Res 22:11740–11754. doi:10.1007/s11356-015-4327-8

    Article  CAS  Google Scholar 

  • Boduszek B (1996) 1-Aminophosphonic acids and esters bearing heterocyclic moiety. Part 2. Pyridine, pyrrole and imidazole derivatives. Phosphorus Sulfur Silicon Relat Elem 113:209–218. doi:10.1080/10426509608046390

    Article  CAS  Google Scholar 

  • Boduszek B (1999) Synthesis and biological activity of heterocyclic amino-phosphonates. Phosphorus Sulfur Silicon Relat Elem 144:433–436. doi:10.1080/10426509908546274

    Article  Google Scholar 

  • Cazzonelli Cl, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ (2009) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cel 21(1):39–53. doi:10.1105/tpc.108.063131

    Article  CAS  Google Scholar 

  • Doe K, Scroggins R, Mcleay D, Wohlgeschaffen G (2005) Solid-phase test for sediment toxicity using the luminescent bacterium Vibrio fischeri. In: Blaise C, Férard JF (ed) Small-scale freshwater toxicity investigations, Vol 1. Springer, Dordrecht, p 107–136

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India, Sect B Biol Sci 85:1. doi:10.1007/s40011-013-0297-0

    Article  CAS  Google Scholar 

  • Estévez V, Villacampa M, Menéndez JC (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. doi:10.1039/b917644f

    Article  Google Scholar 

  • Feierabend J, inkelhüsener TW, Kemmerich P, Schulz U (1982) Mechanism of bleaching in leaves treated with chlorosis-inducing herbicides. Z Naturforsch C 37:898–907. doi:10.1515/znc-1982-1009

    Google Scholar 

  • Forlani G, Berlicki Ł, Duò M, Dziędzioła G, Giberti S, Bertazzini M, Kafarski P (2013) Synthesis and evaluation of effective inhibitors of plant δ1-pyrroline-5-carboxylate reductase. J Agric Food Chem 61:6792–6798. doi:10.1021/jf401234s

    Article  CAS  Google Scholar 

  • Giberti S, Bertazzini M, Liboni M, Berlicki Ł, Kafarski P, Forlani G (2017) Phytotoxicity of aminobisphosphonates targeting both δ1-pyrroline-5-carboxylate reductase and glutamine synthetase. Pest Manag Sci 73:435–443. doi:10.1002/ps.4299

    Article  CAS  Google Scholar 

  • Gomathi R, Rakkiyapan P (2011) Comparative lipid peroxidation, leaf membranę thermostability, and antioxidant system in four sugarcane speciess differing in salt tolerance. Int J Plant Physiol Biochem 3(4):67–74. doi:10.1016/j.ufug.2017.03.018

    CAS  Google Scholar 

  • Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Talla L, Guha N, Scoccianti C, Mattock H, Straif K (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 16:490–491. doi:10.1016/S1470-2045(15)70134-8

    Article  Google Scholar 

  • Hannoufa A, Hossain Z (2012) Regulation of carotenoid accumulation in plants. Biocatal Agric Biotechnol 1:198–202. doi:10.1016/j.bcab.2012.03.004

    CAS  Google Scholar 

  • Hubert C, Oussaid B, Etemad-Moghadam G, Koenig M, Garrigues B (1994) Improved synthesis of new a-Aminophosphonic acids by sonochemical activation. Synthesis 51–55. 10.1055/s-1994-25404

  • Hudson HR (2000) Aminophosphonic and aminophosphinic acids and their derivatives as agrochemicals. In: Kukhar VP, Hudson HR (eds) Aminophosphonic and aminophosphinic acids. chemistry and biological activity. John Wiley & Sons, New York, NY, p 443–482

    Google Scholar 

  • Hudson HR, Lee RJ, Matthews RW (2004) 1-Amino-1-aryl- and 1-amino-1-heteroaryl-methanephosphonic acids and their N-benzhydryl–protected diethyl esters: preparation and characterization. Phosphorus Sulfur Silicon Relat Elem 179:1691–1709. doi:10.1080/10426500490466274

    Article  CAS  Google Scholar 

  • Hudson HR, Lee RJ (2014) A brief review of the anticancer activity of α-aminophosphonic acid derivatives and a report on the in vitro activity of some dialkyl α-aryl- (or heteroaryl)-α-(diphenylmethylamino)-methanephosphonates. Phosphorus Sulfur Silicon Relat Elem 189:1149–1155. doi:10.1080/10426507.2014.905781

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Alagu Lakshmanan GM, Panneerselvam R (2006) Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus (L.). Plant Sci 171:271–276. doi:10.1016/j.plantsci.2006.03.018

    Article  CAS  Google Scholar 

  • Jarvis P, Lopez-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    Article  CAS  Google Scholar 

  • Joly GD, Jacobsen N (2004) Thiourea-catalyzed enantioselective hydro-phosphonylation of imines: practical access to enantiomerically enriched α-amino phosphonic acids. J Am Chem Soc 126:4102–4103. doi:10.1021/ja0494398

    Article  CAS  Google Scholar 

  • Kafarski P, Lejczak B (1991) Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat Elem 63:193–215. doi:10.1080/10426509108029443

    Article  CAS  Google Scholar 

  • Kleszczynska H, Sarapuk J, Bonarska D (2001) The hemolytic toxicity of some new aminophosphonates. Cell Mol Biol Lett 6:271–275

    CAS  Google Scholar 

  • Klimczak AA, Kuropatwa A, Lewkowski J, Szemraj J (2013) Synthesis of N-aryl, furan-derived aminophosponates and studies of their in vitro cytotoxicity against esophageal cancer cells. Med Chem Res 22:852–860. doi:10.1007/s00044-012-0065-3

    Article  CAS  Google Scholar 

  • Klimczak AA, Matusiak A, Lewkowski J, Bitner J, Szemraj J, Kontek R (2015) Dimethyl (2-furyl)-N-(2-methoxyphenyl)aminomethylphosphonate induces apoptosis in esophageal squamous cancer cells. structure vs. activity of its selected analogs. Phosphorus Sulfur Silicon Relat Elem 190:1088–1099. doi:10.1080/10426507.2014.965821

    Article  CAS  Google Scholar 

  • Kraicheva I, Bogomilova A, Tsacheva I, Momekov G, Troev K (2009) Synthesis, NMR characterization and in vitro antitumor evaluation of new aminophosphonic acid diesters. Eur J Med Chem 44:3363–3367. doi:10.1016/j.ejmech.2009.03.017

    Article  CAS  Google Scholar 

  • Kraus TE, Fletcher RA (1994) Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant Cell Physiol 35:45–52. doi:10.1093/oxfordjournals.pcp.a078569

    CAS  Google Scholar 

  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., Ramsden, J.J. (2006) Biochemical mechanisms of detoxification in higher plants. Basis of Phytoremediation, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-28997-5. doi:10.1007/3-540-28997-6

  • Lewkowski J, Rodriguez Moya M, Chmielak M, Rogacz D, Lewicka K, Rychter P (2016a) Synthesis, spectral characterization of several novel pyrene-derived aminophosphonates and their ecotoxicological evaluation using heterocypris incongruens and vibrio fisheri tests. Molecules 21:936. doi:10.3390/molecules21070936

    Article  Google Scholar 

  • Lewkowski J, Malinowski Z, Matusiak A, Morawska M, Rogacz D, Rychter P (2016b) The effect of new thiophene-derived aminophosphonic derivatives on growth of terrestrial plants: a seedling emergence and growth test. Molecules 21:694. doi:10.3390/molecules21060694

    Article  Google Scholar 

  • Li F, Vallabhaneni R, Jane Yu, Rocheford T, Wurtzel T (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147:1334–1346. doi:10.1104/pp.108.122119

    Article  CAS  Google Scholar 

  • Martínez-Sánchez MJ, Pérez-Sirvent C, García-Lorenzo ML, Martínez-López S, Bech J, García-Tenorio R, Bolívar JP (2014) Use of bioassays for the assessment of areas affected by phosphate industry wastes. J Geochem Explor 147:130–138. doi:10.1016/j.gexplo.2014.05.019

    Article  Google Scholar 

  • Matusiak A, Lewkowski J, Rychter P, Biczak R (2013) Phytotoxicity of new furan-derived aminophosphonic acids, N-aryl furaldimines and 5- nitrofuraldimine. J Agric Food Chem 61:7673–7767. doi:10.1021/jf402401z

    Article  CAS  Google Scholar 

  • Mercurio P, Flores F, Mueller JF, Carter S, Negri AP (2014) Glyphosate persistence in seawater. Mar Pollut Bull 85:385–390. doi:10.1016/j.marpolbul.2014.01.021

    Article  CAS  Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nature Education Knowledge 4(8):2, http://www.nature.com/scitable/knowledge/library/plant-soil-interactions-nutrient-uptake-105289112

    Google Scholar 

  • Nisar N, Li L, Lu S, Khin NCH, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 1:198–202. doi:10.1016/j.bcab.2012.03.004

    Google Scholar 

  • Occhipinti A, Berlicki Ł, Giberti S, Dziędzioła G, Kafarski P, Forlani G (2010) Effectiveness and mode of action of phosphonate inhibitors of plant glutamine synthetase. Pest Manag Sci 66:51–58. doi:10.1002/ps.1830

    Article  CAS  Google Scholar 

  • OECD/OCDE 208 (2006) Guidelines for the testing of chemicals. Terrestrial plant test: Seedling emergence and seedling growth test. Organization For Economic and Cooperation Development, Paris

    Google Scholar 

  • Onys’ko PP, Zamulko KA, Kyselyova OI, Yelenich IP, Rassukana YV (2016) Synthesis of polyfluoroalkylated α-aminophosphonic/thiophosphonic acids derivatives. J Fluor Chem 185:191–196. doi:10.1016/j.jfluchem.2016.03.014

    Article  Google Scholar 

  • Oren A, Kuehl M, Karsten U (1995) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments and light penetration. Mar Ecol Prog Ser 128:151–159. doi:10.3354/meps128151

    Article  Google Scholar 

  • Pawłowska B, Biczak R (2016) Evaluation of the effect of tetraethylammonium bromide and chloride on the growth and development of terrestrial plants. Chemosphere 149:24–33. doi:10.1016/j.chemosphere.2016.01.072

    Article  Google Scholar 

  • Radosevic K, Cvjetko M, Srcek VG, Grgas D, Dragicevic TL, Radojcic Redovnikovic I (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotox Environ Saf 112:46–53. doi:10.1016/j.ecoenv.2014.09.034

    Article  CAS  Google Scholar 

  • Rao Devineni S, Doddaga S, Donka R, Raju Chamarthi N (2013) CeCl3 .7H2O-SiO2: catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates. Chin Chem Lett 24:759–763. doi:10.1016/j.cclet.2013.04.037

    Article  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mat 325:36–58. doi:10.1016/j.jhazmat.2016.11.063

    Article  CAS  Google Scholar 

  • Shen Y, Li J, Gu R, Yue L, Zhan X, Xing B (2017) Phenanthrene-triggered chlorosis is caused by elevated chlorophyll degradation and leaf moisture. Environ Pollut 220(Part B):1311–1321. doi:10.1016/j.envpol.2016.11.003

    Article  CAS  Google Scholar 

  • Shetty AS, Miller GW (1966) Influence of iron chlorosis on pigment and protein metabolism in leaves of nicotiana tabacum L. Plant Physiol. 41:415–421. doi:10.1104/pp.41.3.415

    Article  CAS  Google Scholar 

  • Sobhani S, Tashrifi Z (2010) Synthesis of α-functionalized phosphonates from α-hydroxyphosphonates. Tetrahedron 66:1429–1439. doi:10.1016/j.tet.2009.11.081

    Article  CAS  Google Scholar 

  • Sparling DW (2016) Ecotoxicology essentials, environmental contaminants and their biological effects on animals and plants. Academic Press, New York, NY

    Google Scholar 

  • Sundari CS, Reddy NB, Prasad SS, Rao KUM, Prakash SHJ, Reddy CS (2014) The synthesis and bioactivity of dimethyl (2,3- dihydrobenzo[b][1,4]dioxin-6-Yl)(aryl amino)methylphosphonates. Phosphorus Sulfur Silicon Relat Elem 189:551–557. doi:10.1080/10426507.2013.842998

    Article  Google Scholar 

  • Wang L-S, Wang L, Wang L, Wang G, Li Z-H, Wang J-J (2009) Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environ Toxicol 24:296–303. doi:10.1002/tox.20435

    Article  CAS  Google Scholar 

  • Yan S, Valasani K (2013) Phosphonate derivatives for treatment of Alzheimer disease. World Pat WO 2013/173206 A1

  • Zhu X, Wang S, Zhou S, Wei Y, Zhang L, Wang F, Feng Z, Guo L, Mu X (2012) Lanthanide amido complexes incorporating amino-coordinate-lithium bridged bis(indolyl) ligands: synthesis, characterization, and catalysis for hydrophosphonylation of aldehydes and aldimines. Inorg Chem 51:7134–7143. doi:10.1021/ic300137r

    Article  CAS  Google Scholar 

Download references

Funding

Studies were funded by the National Centre of Science of Polish State (NCN), grant no. 2014/13/B/NZ9/02418.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jarosław Lewkowski or Piotr Rychter.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of authors.

Additional information

Jarosław Lewkowski and Piotr Rychter contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewkowski, J., Morawska, M., Karpowicz, R. et al. Evaluation of ecotoxicological impact of new pyrrole-derived aminophosphonates using selected bioassay battery. Ecotoxicology 26, 914–929 (2017). https://doi.org/10.1007/s10646-017-1821-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-017-1821-4

Keywords