, Volume 26, Issue 1, pp 127–140 | Cite as

De novo transcriptome sequencing and analysis of freshwater snail (Radix balthica) to discover genes and pathways affected by exposure to oxazepam

  • Jean-Yves MazzitelliEmail author
  • Elsa Bonnafe
  • Christophe Klopp
  • Frédéric Escudier
  • Florence Geret


Pharmaceuticals are increasingly found in aquatic ecosystems due to the non-efficiency of waste water treatment plants. Therefore, aquatic organisms are frequently exposed to a broad diversity of pharmaceuticals. Freshwater snail Radix balthica has been chosen as model to study the effects of oxazepam (psychotropic drug) on developmental stages ranging from trochophore to hatching. In order to provide a global insight of these effects, a transcriptome deep sequencing has been performed on exposed embryos. Eighteen libraries were sequenced, six libraries for three conditions: control, exposed to the lowest oxazepam concentration with a phenotypic effect (delayed hatching) (TA) and exposed to oxazepam concentration found in freshwater (TB). A total of 39,759,772 filtered raw reads were assembled into 56,435 contigs having a mean length of 1579.68 bp and mean depth of 378.96 reads. 44.91% of the contigs have at least one annotation. The differential expression analysis between the control condition and the two exposure conditions revealed 146 contigs differentially expressed of which 144 for TA and two for TB. 34.0% were annotated with biological function. There were four mainly impacted processes: two cellular signalling systems (Notch and JNK) and two biosynthesis pathways (Polyamine and Catecholamine pathways). This work reports a large-scale analysis of differentially transcribed genes of R. balthica exposed to oxazepam during egg development until hatching. In addition, these results enriched the de novo database of potential ecotoxicological models.


Ecotoxicology RNA sequencing Pharmaceutical Differential analysis Radix balthica 



The authors thank Olivier Bouchez and all Get-PlaGe operators, INRA of Castanet-Tolosan for the perfect processing of our unusual samples. Funding for this work was provided to J-YM by a grant from the Region Midi-Pyrénées, Toulouse (France) for 70% and from Jean-François Champollion University Institute, Albi (France) for 30%. We thank also Jean-Michel MALGOUYRES operator for his help in organism collection and in maintain rearing of R. balthica.

Authors’ contributions

The project was conceived and planned by FG, EB and J-YM. J-YM exposed, grinded and extracted the RNA. CK and FE performed the bioinformatics analysis and J-YM performed the differential analysis and the annotation of differential expressed contigs. J-YM wrote the manuscript and FG and EB proofread it.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institution at which the study was conducted and was in compliance with current French laws.

Supplementary material

10646_2016_1748_MOESM1_ESM.xlsx (26 kb)
Supplementary Table S1


  1. Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL)Google Scholar
  2. Barcia R, Lopez-García JM, Ramos-Martínez JI (1997) The 28S fraction of rRNA in molluscs displays electrophoretic behaviour different from that of mammal cells. Biochem Mol Biol Int 42:1089–1092Google Scholar
  3. Baron M (2012) Endocytic routes to Notch activation. Semin Cell Dev Biol 23:437–442. doi: 10.1016/j.semcdb.2012.01.008 CrossRefGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefGoogle Scholar
  5. Bonnafé E, Sroda S, Budzinski H et al. (2015) Responses of cytochrome P450, GST, and MXR in the mollusk Corbicula fluminea to the exposure to hospital wastewater effluents. Environ Sci Pollut Res 22:11033–11046. doi: 10.1007/s11356-015-4309-x CrossRefGoogle Scholar
  6. Bouétard A, Besnard A-L, Vassaux D et al. (2013) Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. Aquat Toxicol 126:256–265. doi: 10.1016/j.aquatox.2012.11.013 CrossRefGoogle Scholar
  7. Bouétard A, Noirot C, Besnard A-L et al. (2012) Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress. Ecotoxicology 21:2222–2234. doi: 10.1007/s10646-012-0977-1 CrossRefGoogle Scholar
  8. Bouissou-Schurtz C, Houeto P, Guerbet M et al. (2014) Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regul Toxicol Pharmacol 69:296–303. doi: 10.1016/j.yrtph.2014.04.006 CrossRefGoogle Scholar
  9. Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339:814–815. doi: 10.1126/science.1226850 CrossRefGoogle Scholar
  10. Byrne RA, Rundle SD, Smirthwaite JJ, Spicer JI (2009) Embryonic rotational behaviour in the pond snail Lymnaea stagnalis: influences of environmental oxygen and development stage. Zoology 112:471–477. doi: 10.1016/j.zool.2009.03.001 CrossRefGoogle Scholar
  11. Calisto V, Esteves VI (2009) Psychiatric pharmaceuticals in the environment. Chemosphere 77:1257–1274. doi: 10.1016/j.chemosphere.2009.09.021 CrossRefGoogle Scholar
  12. Chen H, Zha J, Liang X et al. (2014) Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea. Aquat Toxicol 155:1–8. doi: 10.1016/j.aquatox.2014.06.001 CrossRefGoogle Scholar
  13. Chen M, Cooper VI, Deng J et al. (2015) Occurrence of pharmaceuticals in Calgary’s wastewater and related surface water. Water Environ Res 87:414–424. doi: 10.2175/106143015X14212658614199 CrossRefGoogle Scholar
  14. Cheung CCC, Lam PKS (1998) Effect of cadmium on the embryos and juveniles of a tropical freshwater snail, Physa acuta (Draparnaud, 1805). Water Sci Technol 38:263–270CrossRefGoogle Scholar
  15. Chiffre A, Clérandeau C, Dwoinikoff C, et al. (2016) Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations. Environ Sci Pollut Res 23(6):4964–4977. doi: 10.1007/s11356-014-3477-4
  16. Coeurdassier M, De Vaufleury A, Badot P-M (2003) Bioconcentration of cadmium and toxic effects on life-history traits of pond snails (Lymnaea palustris and Lymnaea stagnalis) in laboratory bioassays. Arch Environ Contam Toxicol 45:102–109. doi: 10.1007/s00244-002-0152-4 CrossRefGoogle Scholar
  17. Coutellec M-A, Besnard A-L, Caquet T (2013) Population genetics of Lymnaea stagnalis experimentally exposed to cocktails of pesticides. Ecotoxicology 22:879–888. doi: 10.1007/s10646-013-1082-9 CrossRefGoogle Scholar
  18. Das S, Khangarot BS (2010) Bioaccumulation and toxic effects of cadmium on feeding and growth of an Indian pond snail Lymnaea luteola L. under laboratory conditions. J Hazard Mater 182:763–770. doi: 10.1016/j.jhazmat.2010.06.100 CrossRefGoogle Scholar
  19. Deftos ML, He Y-W, Ojala EW, Bevan MJ (1998) Correlating notch signaling with thymocyte maturation. Immunity 9:777–786CrossRefGoogle Scholar
  20. Diederich RJ, Matsuno K, Hing H, Artavanis-Tsakonas S (1994) Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Dev Camb Engl 120:473–481Google Scholar
  21. Dreymueller D, Uhlig S, Ludwig A (2015) ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 308:L325–343. doi: 10.1152/ajplung.00294.2014 CrossRefGoogle Scholar
  22. Elsharkawy AM, Oakley F, Mann DA (2005) The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10:927–939. doi: 10.1007/s10495-005-1055-4 CrossRefGoogle Scholar
  23. Flatmark (2000) Catecholamine biosynthesis and physiological regulation in neuroendocrine cells. Acta Physiol Scand 168:1–17. doi: 10.1046/j.1365-201x.2000.00596.x CrossRefGoogle Scholar
  24. Fong PP, Ford AT (2014) The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquat Environ 151:4–13. doi: 10.1016/j.aquatox.2013.12.003 Google Scholar
  25. Fu L, Niu B, Zhu Z et al. (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. doi: 10.1093/bioinformatics/bts565 CrossRefGoogle Scholar
  26. Gavai AV, Quesnelle C, Norris D et al. (2015) Discovery of clinical candidate BMS-906024: a potent pan-notch inhibitor for the treatment of leukemia and solid tumors. . ACS Med Chem Lett 6:523–527. doi: 10.1021/acsmedchemlett.5b00001 CrossRefGoogle Scholar
  27. Gomot A (1998) Toxic effects of cadmium on reproduction, development, and hatching in the freshwater snail Lymnaea stagnalis for water quality monitoring. Ecotoxicol Environ Saf 41:288–297. doi: 10.1006/eesa.1998.1711 CrossRefGoogle Scholar
  28. Grabherr MG, Haas BJ, Yassour M et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi: 10.1038/nbt.1883 CrossRefGoogle Scholar
  29. Gust M, Fortier M, Garric J et al. (2013) Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. Sci Total Environ 445–446:210–218. doi: 10.1016/j.scitotenv.2012.12.057 CrossRefGoogle Scholar
  30. Halaris A, Plietz J (2007) Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs 21:885–900. doi: 10.2165/00023210-200721110-00002 CrossRefGoogle Scholar
  31. Heikkinen AE, Möykkynen TP, Korpi ER (2008) Long-lasting modulation of glutamatergic transmission in VTA dopamine neurons after a single dose of benzodiazepine agonists. Neuropsychopharmacology 34:290–298. doi: 10.1038/npp.2008.89 CrossRefGoogle Scholar
  32. Idder S, Ley L, Mazellier P, Budzinski H (2013) Quantitative on-line preconcentration-liquid chromatography coupled with tandem mass spectrometry method for the determination of pharmaceutical compounds in water. Anal Chim Acta 805:107–115. doi: 10.1016/j.aca.2013.10.041 CrossRefGoogle Scholar
  33. Ishikawa H (1977) Comparative studies on the thermal stability of animal ribosomal RNA’s V. Tentaculata (phoronids, moss-animals and lamp-shells). Comp Biochem Phys B 57:9–14. doi: 10.1016/0305-0491(77)90073-6 Google Scholar
  34. Levin JI, Nelson FC, Delos Santos E et al. (2004) Benzodiazepine inhibitors of the MMPs and TACE. Part 2. Bioorg Med Chem Lett 14:4147–4151. doi: 10.1016/j.bmcl.2004.06.031 CrossRefGoogle Scholar
  35. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324 CrossRefGoogle Scholar
  36. Loos R, Carvalho R, António DC et al. (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487. doi: 10.1016/j.watres.2013.08.024 CrossRefGoogle Scholar
  37. Maniati E, Bossard M, Cook N et al. (2011) Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J Clin Invest 121:4685–4699. doi: 10.1172/JCI45797 CrossRefGoogle Scholar
  38. Mariette J, Escudié F, Allias N et al. (2012) NG6: Integrated next generation sequencing storage and processing environment. BMC Genomics 13:462. doi: 10.1186/1471-2164-13-462 CrossRefGoogle Scholar
  39. Mariette J, Noirot C, Nabihoudine I et al. (2014) RNAbrowse: RNA-seq de novo assembly results browser. PLoS One 9:e96821. doi: 10.1371/journal.pone.0096821 CrossRefGoogle Scholar
  40. Matsuno K, Diederich RJ, Go MJ et al. (1995) Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Dev Camb Engl 121:2633–2644Google Scholar
  41. McKenna A, Hanna M, Banks E et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi: 10.1101/gr.107524.110 CrossRefGoogle Scholar
  42. Muttray AF, Schulte PM, Baldwin SA (2008) Invertebrate p53-like mRNA isoforms are differentially expressed in mussel haemic neoplasia. Mar Environ Res 66:412–421. doi: 10.1016/j.marenvres.2008.06.004 CrossRefGoogle Scholar
  43. Nelson FC, Delos Santos E, Levin JI et al. (2002) Benzodiazepine inhibitors of the MMPs and TACE. Bioorg Med Chem Lett 12:2867–2870CrossRefGoogle Scholar
  44. Pande GS (2010) Observations on the embryonic development of freshwater pulmonate snail Lymnaea acuminata (lamarck, 1822) (gastropoda: mollusca). The Bioscan 5:549–554Google Scholar
  45. Pertea G, Huang X, Liang F et al. (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652. doi: 10.1093/bioinformatics/btg034 CrossRefGoogle Scholar
  46. Peschon JJ, Slack JL, Reddy P et al. (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284CrossRefGoogle Scholar
  47. Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain?. Trends Pharmacol Sci 21:187–193. doi: 10.1016/S0165-6147(00)01460-7 CrossRefGoogle Scholar
  48. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet TIG 16:276–277CrossRefGoogle Scholar
  49. Richetto J, Labouesse MA, Poe MM et al. (2015) Behavioral effects of the benzodiazepine-positive allosteric modulator SH-053-2’F-S-CH3 in an Immune-mediated neurodevelopmental disruption model. Int J Neuropsychopharmacol 18:pyu055–pyu055. doi: 10.1093/ijnp/pyu055 CrossRefGoogle Scholar
  50. Sanchez W, Sremski W, Piccini B et al. (2011) Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ Int 37:1342–1348. doi: 10.1016/j.envint.2011.06.002 CrossRefGoogle Scholar
  51. Sarker MM, Nesa B, Jahan MS (2007) Embryonic developmental ecology of freshwater snail Lymnaea acuminata (Lymnaeidae: Gastropoda). Pak J Biol Sci PJBS 10:23–31CrossRefGoogle Scholar
  52. Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32:380–387. doi: 10.1016/ CrossRefGoogle Scholar
  53. Schroeder A, Mueller O, Stocker S et al. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi: 10.1186/1471-2199-7-3 CrossRefGoogle Scholar
  54. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092. doi: 10.1093/bioinformatics/bts094 CrossRefGoogle Scholar
  55. Schunter C, Vollmer SV, Macpherson E, Pascual M (2014) Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. BMC Genomics 15:167. doi: 10.1186/1471-2164-15-167 CrossRefGoogle Scholar
  56. Seddon MB, Kebapçi U, Van Damme D, Prie V (2013) Radix balthica. In: IUCN red list threat. Species. Accessed 11 Jun 2015
  57. Takeda K, Ichijo H (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7:1099–1111. doi: 10.1046/j.1365-2443.2002.00591.x CrossRefGoogle Scholar
  58. Wang X, Ying W, Dunlap KA et al. (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:84–84. doi: 10.1095/biolreprod.113.114637 CrossRefGoogle Scholar
  59. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi: 10.1038/nrg2484 CrossRefGoogle Scholar
  60. Weinmaster G (1997) The Ins and outs of notch signaling. Mol Cell Neurosci 9:91–102. doi: 10.1006/mcne.1997.0612 CrossRefGoogle Scholar
  61. Weinmaster G (1998) Notch signaling: direct or what?. Curr Opin Genet Dev 8:436–442. doi: 10.1016/S0959-437X(98)80115-9 CrossRefGoogle Scholar
  62. Weinmaster G (2000) Notch signal transduction: a real Rip and more. Curr Opin Genet Dev 10:363–369. doi: 10.1016/S0959-437X(00)00097-6 CrossRefGoogle Scholar
  63. Weinmaster G, Roberts V, Lemke G (1992) Notch2: a second mammalian Notch gene. Development 116:931–941Google Scholar
  64. Winnebeck EC, Millar CD, Warman GR (2010) Why does insect RNA look degraded?. J Insect Sci 10:1–7. doi: 10.1673/031.010.14119 CrossRefGoogle Scholar
  65. Yuan S, Jiang X, Xia X et al. (2013) Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 90:2520–2525. doi: 10.1016/j.chemosphere.2012.10.089 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jean-Yves Mazzitelli
    • 1
    Email author
  • Elsa Bonnafe
    • 1
  • Christophe Klopp
    • 2
  • Frédéric Escudier
    • 2
  • Florence Geret
    • 1
  1. 1.Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417Université de Toulouse, INU ChampollionAlbiFrance
  2. 2.Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875INRA ToulouseCastanet-TolosanFrance

Personalised recommendations