Abstract
Mercury (Hg) is a ubiquitous heavy metal that occurs naturally in the environment, but its levels have been supplemented for decades by a variety of human activities. Mercury can have serious deleterious effects on a variety of organisms, with top predators being particularly susceptible because methylmercury bioaccumulates and biomagnifies in food webs. Among birds, seabirds can have especially high levels of Hg contamination and Leach’s storm-petrels (Oceanodroma leucorhoa), in particular, have amongst the highest known levels. Several populations of Leach’s storm-petrels have declined recently in the Northwest Atlantic. The causes of these declines remain uncertain, but the toxic effects of Hg could be a potential factor in this decline. Here, we tested for relationships between adult blood total Hg (THg) concentration and several offspring development parameters, and adult return rate of Leach’s storm-petrels breeding on Bon Portage Island (43° 28′ N, 65° 44′ W), Nova Scotia, Canada, between 2011 and 2015 (blood samples n = 20, 36, 6, 15, and 13 for each year, respectively). Overall, THg levels were elevated (0.78 ± 0.43 μg/g wet wt.) compared to other species of seabirds in this region, and varied significantly among years. However, we found no associations between THg levels and reproductive parameters or adult return rate. Our results indicate that levels of mercury observed in Leach’s storm-petrel blood, although elevated, appear not to adversely affect their offspring development or adult return rate on Bon Portage Island.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA (2016) Maternal transfer of contaminants in birds: mercury and selenium concentrations in parents and their eggs. Environ Pollut 210:145–154
Asmund G, Nielsen SP (2002) Mercury in dated greenland marine sediments. Sci Total Environ 245:61–72
Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci 55:1114–1121
Becker PH, González-Solís J, Behrends B, Croxall J (2002) Feather mercury levels in seabirds at south Georgia: influence of trophic position, sex and age. Mar Ecol Prog Ser 243:261–269
Bicknell TWJ, Reid JB, Votier SC (2009) Probable predation of Leach’s storm-petrel Oceanodroma leucorhoa eggs by St Kilda field mice Apodemus sylvaticus hirtensis. Bird Study 56:419–422
Blackmer AL, Ackerman JT, Nevitt GA (2003) Effects of investigator disturbance on hatching success and nest-site fidelity in a long-lived seabird, Leach’s storm-petrel. Biol Conserv 116:141–148
Bloom N, Fitzgerald WF (1988) Determination of volatile mercury species at the pictogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Analytica Chimica Acta 208:151–61
Bond A, Diamond AW (2009) Mercury concentrations in seabird tissues from Machias Seal Island, New Brunswick, Canada. Sci Total Environ 407:4340–4347
Bond AL, Hobson KA, Branfireun BA (2015) Rapidly increasing methyl mercury in endangered ivory gull (Pagophila eburnea) feathers over a 130 year record. Proc R Soc B 282:20150032
Braune BM (2007) Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975–2003. Environ Pollut 148:599–613
Braune BM, Gaskin DE (1987) Mercury levels in bonaparte’s gulls (Larus philadelphia) during autumn molt in the Quoddy region, New Brunswick, Canada. Arch Environ Contam Toxicol 16:539–549
Burger J, Gochfeld M (2004) Metal levels in eggs of common terns (Sterna hirundo) in New Jersey: temporal trends from 1971 to 2002. Environ Res 94:336–343
Burgess NM, Meyer MW (2008) Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology 17:83–91
Burgess NM, Bond AL, Hebert CE, Neugebauer E, Champoux L (2013) Mercury trends in herring gull (Larus argentatus) eggs from Atlantic Canada 1972-2008: temporal change or dietary shift? Environ Pollut 172:216–222
Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic arctic marine food web (northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263
Cossa D, Heimbürger L-E, Lannuzel D, Rintoul SR, Butler ECV, Bowie AR, Averty B, Watson RJ, Remenyi T (2011) Mercury in the southern ocean. Geochim Cosmochim Acta 75:4037–4052
Croxall JP, Rothery P, Crisp A (1992) The effect of maternal age and experience on egg-size and hatching success in wandering albatross diomeda exulans. Ibis 134:219–228
Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, Scheuhammer T, Andersen M, Andreasen C, Andriashek D, Asmund G, Aubail A, Baagøe H, Born EW, Chan HM, Derocher AE, Grandjean P, Knott K, Kirkegaard M, Krey A, Lunn N, Messier F, Obbard M, Olsen MT, Ostertag S, Peacock E, Renzoni A, Rigét FF, Skaare JU, Stern G, Stirling I, Taylor M, Wiig Ø, Wilson S, Aars J (2013) What are the toxicological effects of mercury in arctic biota? Sci Total Environ 443:775–790
Edmonds ST, Evers DC, Cristol D, Mettke-Hofmann C, Powell LL, McGann AJ, Armiger JW, Lane OP, Tessler DF, Newell P, Heyden K, O’Driscoll NJ (2010) Geographic and seasonal variation in mercury exposure of the declining rusty blackbird. Condor 112:789–799
Edmonds ST, O’Driscoll NJ, Hiller NK, Atwood JL, Evers DC (2012) Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environ Pollut 171:148–154
Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley Jr JH, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81
Fife DT, Pollet IL, Robertson GJ, Mallory ML, Shutler D (2015) Apparent survival of adult leach’s storm-petrels (Oceanodroma leucorhoa) breeding on Bon Portage Island, Nova Scotia. Avian Cons Ecol 10(2):1
Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662
Furness RW, Camphuysen KCJ (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737
Goodale MW, Evers DC, Mierzykowski SE, Bond AL, Burgess NM, Otorowski CI, Welch LJ, Hall S, Ellis JC, Allen RB, Diamond AW, Kress SW, Taylor RJ (2008) Maine foraging birds as bioindicators of mercury in the Gulf of Maine. EcoHealth 5:409–425
Goutte A, Barbraud C, Meillère A, Carravieri A, Bustamante P, Labadie P, Budzinski H, Delord K, Cherel Y, Weimerskirch H, Chastel O (2014a) Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proc R Soc B 20133313
Goutte A, Bustamante P, Barbraud C, Delord K, Weimerskirch H, Chastel O (2014b) Demographic responses to mercury exposure in two closely related antarctic top predators. Ecology 95:1075–1086
Hawley DM, Hallinger KH, Cristol DA (2009) Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology 18:499–503
Hedd A, Pollet IP, Mauck RA, Burgess NM, Montevecchi WA, Shutler D, Robertson GJ. (2015) Foraging areas, offshore habitat use and colony segregation by incubating leach’s Storm-petrels in the northwest Atlantic. Manuscript submitted.
Henny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA (2002) Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. Ecotox 11:213–231
Hoyt DF (1979) Practical methods of estimating volume and fresh weight of bird eggs. Auk 96:73–77
Huntington CE, Butler RG, Mauck RA (1996) Leach’s storm-petrel (Oceanodroma leucorhoa). In: Poole A, Gill F (eds) The birds of North America. The Birds of North America, Inc., Philadelphia, PA, No. 233
Kahle S, Becker PH (1999) Bird blood as bioindicator for mercury in the environment. Chemosphere 39:2451–2457
Kim EY, Murakami T, Saeki K, Tatsukawa R (1996) Mercury levels and its chemical form in tissues and organs of seabirds. Arch Environ Contam Toxicol 30:259–266
Mason RP, Sheu G-R (2002) Role of the ocean in the global mercury cycle. Global Biochem Cycles 40:1–14
Mitro MG, Evers DC, Meyer MW, Piper WH (2008) Common loon survival rates and mercury in New England and Wisconsin. J Wildlife Manage 72:665–673
Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Poll 80:851–870
Morse DH, Kress SW (1984) The effect of burrow loss on mate choice in the leach’s storm-petrel. Auk 101:158–160
Newson SE, Mitchell PI, Parsons M, O’Brien SH, Austin GE, Benn S, Black J, Blackburn J, Brodie B, Humphreys E, Leech D, Prior M, Webster M (2008) Population decline of leach’s storm-petrel Oceanodroma leucorhoa within the largest colony in Britain and Ireland. Seabird 21:77–84
Oxley JR (1999) Nesting distribution and abundance of Leach’s Storm-petrel (Oceanodroma leucorhoa) on Bon Portage Island, Nova Scotia. MSc Thesis, Acadia University
Pacyna EG, Pacyna JM, Steehuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063
Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steehuisen F, Maxson P (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499
Pinkney AE, Driscoll CT, Evers DC, Hooper MJ, Horan J, Jones JW, Lazarus RS, Marshall HG, Milliken A, Rattner BA, Schmerfeld J, Sparling DW (2015) Interactive effects of climate change with nutrients, mercury, and freshwater acidification on key taxa in the north Atlantic landscape conservation cooperative region. Integr Environ Assess Manag 11:355–369
Pollet IL, Ronconi RA, Jonsen ID, Leonard ML, Taylor PD, Shutler D (2014a) Foraging movements of Leach’s storm-petrels Oceanodroma leucorhoa during incubation. J Avian Biol 45:305–314
Pollet IL, Hedd A, Taylor PD, Montevecchi WA, Shutler D (2014b) Migratory movements and wintering areas of leach’s storm-petrels tracked using geolocators. J Field Ornithol 85:322–329
R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria ISBN 3-900051-07-0. http://www.R-project.org
Robertson GJ, Russell J, Bryant R, Fifield DA, Stenhouse I (2006) Size and trends of leach’s storm-petrel Oceanodroma leucorhoa breeding populations in newfoundland. Atlantic Seabirds 8:41–50
Sanz-Aguilar A, Martínez-Abraín A, Tavecchia G, Mínguez E, Oro D (2009) Evidence-based culling of a facultative predator: efficacy and efficiency components. Biol Conserv 142:424–431
Spencer SH, Shutler D, O’Brien MS (2011) Correlates of mercury in female river otters (Lontra canadensis) from Nova Scotia, Canada. Environ Toxicol Chem 30:1879–1884
Stenhouse IJ, Montevecchi WA (1999) Indirect effects of the availability of capelin and fishery discard: gull predation on breeding storm-petrels. Mar Ecol Prog Ser 184:303–307
Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988
Sydeman WJ, Penniman JF, Penniman TM, Pyle P, Ainley DG (1991) Breeding performance in the western gull: effects of parental age, timing of breeding and year in relation to food availability. The Journal of Animal Ecology 60(1):135
Tartu S, Angelier F, Wingfield JC, Bustamante P, Labadie P, Budzinski H, Weimerskirch H, Bustnes JO, Chastel O (2015) Corticosterone, prolactin and egg neglect behavior in relation to mercury and legacy pops in a long-lived Antarctic bird. Sci Total Environ 505:180–188
Thomas CS (1983) The relationships between breeding experience, egg volume and reproductive success of the kittiwake Rissa tridactyla. Ibis 125:567–574
Thompson DR (1990) Metal levels in marine vertebrates. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, FL, p 143–182
Thompson DR, Hamer KC, Furness RW (1991) Mercury accumulation in great skuas Catharacta skua of known age and sex, and its effects upon breeding and survival. J Appl Ecol 28:672–684
Thompson DR, Furness RW, Walsh PM (1992) Historical changes in mercury concentrations in the marine ecosystem in the north and north-east Atlantic ocean as indicated by seabird feathers. J Appl Ecol 29:79–84
Thompson DR, Furness RW, Lewis SA (1993) Temporal and spatial variation in mercury concentrations in some albatrosses and petrels from the sub-antarctic. Polar Biol 13:239–244
UNEP (United Nations Environment Programme) (2013) Global mercury assessment 2013: sources, emissions, releases, and environmental transport. UNEP chemicals branch, Geneva
Wanless S, Harris MP (1988) The importance of relative laying date on breeding success of the guillemot Uria aalge. Ornis Scand 19:205–211
Wayland M, Gilchrist HG, Dickson DL, Bollinger T, James C, Carreno RA, Keating J (2001) Trace elements in king eiders and common eiders in the Canadian Arctic. Arch Environ Contam Toxicol 41:491–500
Wayland M, Drake KL, Alisauskas RT, Kellett DK, Traylor J, Swoboda C, Mehl K (2008) Survival rates and blood metal concentrations in two species of free-ranging north American sea ducks. Environ Toxicol Chem 27:698–704
Weller MW (1956) A simple field candler for waterfowl eggs. J Wildlife Manage 20:111–113
Wiedinmyer C, Friedli H (2007) Mercury emission estimates from fires: an initial inventory for the United States. Environ Sci Technol 41:8092–8098
Wiese FK, Montevecchi WA, Davoren GK, Huettmann F, Diamond AW, Linke J (2001) Seabirds at risk around offshore oil platforms in the north-west Atlantic. Mar Pollut Bull 42:1285–1290
Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160
Acknowledgments
We thank Erika Holland, Danielle Fife, and Madeline Sutton for their assistance in the field, and station manager Lee Adams for logistical support getting to and while on Bon Portage Island. Funding was provided through a Natural Sciences and Engineering Research Council (NSERC) Post-Graduate Scholarship #407600–2011 to I. L. Pollet, Environment Canada, and Nova Scotia Habitat Conservation Fund # NSHCF 16–15 (via monies from hunters and trappers) to D. Shutler and I. Pollet, and through the Canada Research Chairs program and an NSERC Discovery Grant # 341960–2013 to N. J. O’Driscoll. We also thank the two anonymous reviewers for their helpful comments and editorial suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Ethical approval
All applicable international, national, and institutional guidelines for the care and use of animals were followed.
Rights and permissions
About this article
Cite this article
Pollet, I.L., Leonard, M.L., O’Driscoll, N.J. et al. Relationships between blood mercury levels, reproduction, and return rate in a small seabird. Ecotoxicology 26, 97–103 (2017). https://doi.org/10.1007/s10646-016-1745-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10646-016-1745-4