Skip to main content
Log in

An assessment of exposure and effects of persistent organic pollutants in an urban Cooper’s hawk (Accipiter cooperii) population

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Among the stressors confronting urban wildlife, chemical contaminants pose a particular problem for high trophic feeding species. Previous data from fortuitous carcass collections revealed surprisingly high levels of persistent organic pollutants in raptor species, including the Cooper’s hawk (Accipiter cooperii), from urbanized areas of southwestern British Columbia, Canada. Thus, in 2012 and 2013, we followed up on that finding by measuring POPs in blood samples from 21 adult and 15 nestling Cooper’s hawks in Vancouver, a large urban area in southwestern Canada. Reproductive success and circulating thyroid hormones were measured to assess possible toxicological effects. Model comparisons showed concentrations of polychlorinated biphenyls (ΣPCBs) were positively influenced by the level of urbanization. Total thyroxin (TT4) was negatively associated with increases in ΣPCBs. Total triiodothyronine (TT3) was negatively associated with ΣPCBs and polybrominated diphenyl ethers (ΣPBDEs). The legacy insecticide, dieldrin, appeared to have some negative influence on reproductive success. There is some evidence of biochemical perturbation by PBDEs and lingering impact of legacy POPs which have not been used for at least 40 years, but overall Cooper’s hawks have successfully populated this urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bird DM, Varland DE, Negro, JJ (1996) Raptors in human landscapes: Adaptation to built and cultivated environments. Academic Press, London, England

  • Bishop CA, Brogan JM (2013) Estimates of avian mortality attributed to vehicle collisions in Canada Estimation de la mortalit{é} aviaire attribuable aux collisions automobiles au Canada. Avian Conserv Ecol 8:2

    Google Scholar 

  • Blair RB (1999) Birds and butterflies along an urban gradient: surrogate taxa for assessing biodiversity? Ecol Appl 9:164–170

    Article  Google Scholar 

  • Blair RB (2007) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519

    Article  Google Scholar 

  • Bloom PH, Henckel JL, Henckel EH, Schmutz JK, Woodbridge B, Bryan JR, Anderson RL, Detrich PJ, Maechtle TL, McKinley JO (1992) The dho-gaza with Great Horned Owl lure: an analysis of its effectiveness in capturing raptors. J Raptor Res 26:167–178

    Google Scholar 

  • Boal CW, Mannan RW (1998) Nest-site selection by Cooper’s hawks in an urban environment. J Wildl Manag 62:864–871

    Article  Google Scholar 

  • Bogan JA, Newton I (1977) Redistribution of DDE in sparrowhawks during starvation. Bull Environ Contam Toxicol 18:317–321

    Article  CAS  Google Scholar 

  • Brogan JM (2014) Sources and effects of persistent organic pollutants and brominated flame retardants in Cooper’s hawks (Accipiter cooperii) of Vancouver, British Columbia (Master’s Thesis). Retrieved from summit.sfu.ca

  • Brouwer A, Morse DC, Lans MC et al. (1998) Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health 14:59–84

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, New York

  • Bustnes JO, Folstad I, Erikstad KE, Fjeld M, Miland OO, Skaare JU (2002) Blood concentration of organochlorine pollutants and wing feather asymmetry in glaucous gulls. Funct Ecol 16:617–622

    Article  Google Scholar 

  • Bustnes JO, Moe B, Herzke D et al. (2010) Strongly increasing blood concentrations of lipid-soluble organochlorines in high arctic common eiders during incubation fast. Chemosphere 79:320–325

    Article  CAS  Google Scholar 

  • Cava JA, Stewart AC, Rosenfield RN (2012) Introduced species dominate the diet of breeding urban Cooper’s hawks in British Columbia. Wilson J Ornithol 124:775–782

    Article  Google Scholar 

  • Cesh LS, Elliott KH, Quade S et al. (2010) Polyhalogenated aromatic hydrocarbons and metabolites: relation to circulating thyroid hormone and retinol in nestling bald eagles (Haliaeetus Leucocephalus). Environ Toxicol Chem 29:1301–1310

    Article  CAS  Google Scholar 

  • Cesh LS, Williams TD, Garcelon DK, Elliott JE (2008) Patterns and trends of chlorinated hydrocarbons in nestling bald eagle (Haliaeetus leucocephalus) plasma in British Columbia and Southern California. Arch Environ Contam Toxicol 55:496–502

    Article  CAS  Google Scholar 

  • Curtis OE, Rosenfield RN, Bielefeldt J (2006) Cooper's hawk (Accipiter cooperii). In Poole A (ed) The Birds of North America Online. Cornell Lab of Ornithology, Ithaca

  • Edson JT, Holmes JV, Elliott JE, Bishop CA (2011) The rocky mountain arsenal: from environmental catastrophe to urban wildlife refuge. In: Elliott JE, Bishop CA, Morrissey CA (eds) Wildlife ecotoxicology: Forensic approaches. Springer, New York, p 93–152

    Chapter  Google Scholar 

  • Elliott JE, Bishop CA (2011) Cyclodienes and other organochlorine pesticides in birds. In: Beyer WN, Meador J (eds) Environmental contaminants in wildlife — Interpreting tissue concentrations. CRC Press, New York, NY, USA, p 441–469

    Google Scholar 

  • Elliott JE, Harris ML (2001) An ecotoxicological assessment of chlorinated hydrocarbon effects on bald eagle populations. Rev Toxicol 4:1–60

    CAS  Google Scholar 

  • Elliott JE, Martin PA (1994) Chlorinated hydrocarbons and shell thinning in eggs of (Accipiter) hawks in Ontario, 1986-1989. Environ Pollution 86:189–200

    Article  CAS  Google Scholar 

  • Elliott JE, Norstrom RJ (1998) Chlorinated hydrocarbon contaminants and productivity of bald eagle populations on the Pacific coast of Canada. Environ Toxicol Chem 17:1142–1153

    CAS  Google Scholar 

  • Elliott JE, Shutt LJ (1993) Monitoring organochlorines in blood of Sharp-shinned hawks (Accipiter striatus) migrating through the Great Lakes. Environ Toxicol Chem 12:241–250

    Article  CAS  Google Scholar 

  • Elliott JE, Brogan JM, Lee SL, Drouillard KG, Elliott KH (2015) PBDEs and other POPs in urban birds of prey partly explained by trophic level and carbon source. Sci Total Environ 524:157–165

    Article  Google Scholar 

  • Elliott JE, Levac J, Guigueno MF et al. (2012) Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers? Environ Sci Technol 46:9681–9689

    Article  CAS  Google Scholar 

  • Elliott JE, Morrissey CA, Henny CJ, Inzunza ER, Shaw P (2007) Satellite telemetry and prey sampling reveal contaminant sources to Pacific Northwest ospreys. Ecol Appl 17:1223–1233

    Article  Google Scholar 

  • Elliott JE, Norstrom RJ, Smith GE (1996) Patterns, trends, and toxicological significance of chlorinated hydrocarbon and mercury contaminants in bald eagle eggs from the Pacific coast of Canada, 1990-1994. Arch Environ Contam Toxicol 31:354–367

    Article  CAS  Google Scholar 

  • Elliott KH, Cesh LS, Dooley JA, Letcher RJ, Elliott JE (2009) PCBs and DDE, but not PBDEs, increase with trophic level and marine input in nestling bald eagles. Sci Total Environ 407:3867–3875

    Article  CAS  Google Scholar 

  • Environment Canada (2007) Multiresidue method for the determination of chlorinated pesticides, polychlorinated biphenyls, brominated flame retardants and brominated diphenyl ethers in wildlife tissues by gc/msd. National Wildlife Research Center, Methods Manual (MET-CHEM-OC-06C)

  • Fernie KJ, Letcher RJ (2010) Historical contaminants, flame retardants, and halogenated phenolic compounds in peregrine falcon (Falco peregrinus) nestlings in the Canadian Great Lakes Basin. Environ Sci Technol 44:3520–3526

    Article  CAS  Google Scholar 

  • Fernie KJ, Bortolotti GR, Smits JE, Willson J, Drouillard KG, Bird DM (2000) Changes in egg composition of American kestrels exposed to dietary polychlorinated biphenyls. J Toxicol Environ Health 60:101–113

    Article  Google Scholar 

  • Gill CE, Elliott JE (2003) Influence of food supply and chlorinated hydrocarbon contaminants on breeding success of bald eagles. Ecotoxicology 12:95–111

    Article  CAS  Google Scholar 

  • Guertin DA, Harestad AS, Ben-David M, Drouillard KG, Elliott JE (2010) Fecal genotyping and contaminant analyses reveal variation in individual river otter exposure to localized persistent contaminants. Environ Toxicol Chem 29:275–284

    Article  CAS  Google Scholar 

  • Hagen PE, Walls MP (2005) The Stockholm Convention on persistent organic pollutants. Nat Resour Environ 19:49–52

    Google Scholar 

  • Harris ML, Elliott JE, Butler RW, Wilson LK (2003) Reproductive success and chlorinated hydrocarbon contamination of resident great blue herons (Ardea herodias) from coastal British Columbia, Canada, 1977 to 2000. Environ Pollut 121:207–227

    Article  CAS  Google Scholar 

  • Harris ML, Wilson LK, Elliott JE, Bishop CA, Tomlin AD, Henning KV (2000) Transfer of DDT and metabolites from fruit orchard soils to American robins (Turdus migratorius) twenty years after agricultural use of DDT in Canada. Arch Environ Contam Toxicol 39:205–220

    Article  CAS  Google Scholar 

  • Heinz GH, Johnson RW (1981) Diagnostic brain residues of dieldrin: some new insights. In Avian and Mammalian Wildlife Toxicology: Second Conference. ASTM International

  • Hennessey SP (1978) Ecological relationships of accipiters in northern Utah-with special emphasis on the effect of human disturbance. Utah State Univ, Logan, Master’s Thesis

    Google Scholar 

  • Henny CJ, Meeker DL (1981) An evaluation of blood plasma for monitoring DDE in birds of prey. Environ Pollut A 25(4):291–304

    Article  CAS  Google Scholar 

  • Henny CJ, Grove RA, Kaiser JL, Johnson BL (2010) North American osprey populations and contaminants: historic and contemporary perspectives. J Toxicol Environ Health, Part B 13(7-8):579–603. doi:10.1080/10937404.2010.538658

    Article  CAS  Google Scholar 

  • Henny CJ, Kaiser JL, Grove RA, Johnson BL, Letcher RJ (2009) Polybrominated diphenyl ether flame retardants in eggs may reduce reproductive success of ospreys in Oregon and Washington, USA. Ecotoxicology 18:802–813

    Article  CAS  Google Scholar 

  • Henriksen EO, Gabrielsen GW, Skaare JU (1998) Validation of the use of blood samples to assess tissue concentrations of organochlorines in glaucous gulls, Larus hyperboreus. Chemosphere 37:2627–2643

    Article  CAS  Google Scholar 

  • Hindmarch S, Krebs EA, Elliott JE, Green DJ (2012) Do landscape features predict the presence of barn owls in a changing agricultural landscape? Landsc Urban Plan 107:255–262

    Article  Google Scholar 

  • Jaspers VLB, Covaci A, Voorspoels S, Dauwe T, Eens M, Schepens P (2006) Brominated flame retardants and organochlorine pollutants in aquatic and terrestrial predatory birds of Belgium: levels, patterns, tissue distribution and condition factors. Environ Pollut 139:340–352

    Article  CAS  Google Scholar 

  • Law RJ, Allchin CR, de Boer J et al. (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208

    Article  CAS  Google Scholar 

  • Leith KF, Bowerman WW, Wierda MR, Best DA, Grubb TG, Sikarske JG (2010) A comparison of techniques for assessing central tendency in left-censored data using PCB and p, p′ DDE contaminant concentrations from Michigan’s Bald Eagle Biosentinel Program. Chemosphere 80(1):7–12

    Article  CAS  Google Scholar 

  • Mannan RW, Boal CW (2000) Home range characteristics of male Cooper’s Hawks in an urban environment. Wilson Bull 112:21–27

    Article  Google Scholar 

  • Mannan RW, Steidl RJ, Boal CW (2008) Identifying habitat sinks: a case study of Cooper’s hawks in an urban environment. Urban Ecosyst 11:141–148

    Article  Google Scholar 

  • McKinney MA, Cesh LS, Elliott JE, Williams TD, Garcelon DK, Letcher RJ (2006) Brominated flame retardants and halogenated phenolic compounds in North American west coast bald eaglet (Haliaeetus leucocephalus) plasma. Environ Sci Technol 40:6275–6281

    Article  CAS  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52:883–890

    Article  Google Scholar 

  • McNabb FMA, Fox GA (2003) Avian thyroid development in chemically contaminated environments: is there evidence of alterations in thyroid function and development?. Evol Dev 5(1):76–82. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12492413

    Article  CAS  Google Scholar 

  • Meng HK (1951) Cooper’s Hawk, Accipiter cooperii (Bonaparte). Cornell Univ, Ithaca, NY, Phd Thesis

    Google Scholar 

  • Metro Vancouver (2006) Metro Vancouver Land Use (shp file) http://www.metrovancouver.org/data/Data/LandUse/LandUse2011.shp. Accessed June 2013

  • Millsap BA (1981) Distributional status of Falconiformes in west central Arizona with notes on ecology, reproductive success, and management. Tech. Note 355. USDI-Bureau Land Management.

  • Morrissey CA, Stanton DWG, Tyler CR, Pereira MG, Newton J, Durance I, Ormerod SJ (2014) Developmental impairment in Eurasian dipper nestlings exposed to urban stream pollutants. Environ Toxicol Chem 33:1315–1323

    Article  CAS  Google Scholar 

  • Morrissey CA, Stanton DWG, Pereira MG, Newton J, Durance I, Tyler CR, Ormerod SJ (2013) Eurasian dipper eggs indicate elevated organohalogenated contaminants in urban rivers. Environ Sci Technol 47:8931–8939

    CAS  Google Scholar 

  • Newsome SD, Park J-S, Henry BW et al. (2010) Polybrominated diphenyl ether (PBDE) levels in peregrine falcon (Falco peregrinus) eggs from California correlate with diet and human population density. Environ Sci Technol 44:5248–5255

    Article  CAS  Google Scholar 

  • Newton I, Wyllie I (1992) Recovery of a sparrowhawk population in relation to declining pesticide contamination. J Appl Ecol 29:476–484

    Article  CAS  Google Scholar 

  • Newton I, Bogan JA, Rothery P (1986) Trends and effects of organochlorine compounds in sparrowhawk eggs. J Appl Ecol 23(2):461–478

    Article  CAS  Google Scholar 

  • Newton I, Wyllie I, Asher A (1993) Long-term trends in organochlorine and mercury residues in some predatory birds in Britain. Environ Pollut 79:143–151

    Article  CAS  Google Scholar 

  • Noble D, Elliott JE (1990) Levels of contamination in Canadian raptors, 1966 to 1988- effects and temporal trends. Can Field-Nat 104(2):222–243

    Google Scholar 

  • Park J-S, Fong A, Chu V, Holden A, Linthicum J, Hooper K (2011) Prey Species as possible sources of PBDE exposures for peregrine falcons (Falco peregrinus) nesting in major California cities. Arch Environ Contam Toxicol 60:518–523

    Article  CAS  Google Scholar 

  • Park J-S, Holden A, Chu V et al. (2009) ) Time-trends and congener profiles of PBDEs and PCBs in California peregrine falcons Falco peregrinus. Environ Sci Technol 43:8744–8751

    Article  CAS  Google Scholar 

  • Peakall DB, Kiff LF (1979) Eggshell thinning and DDE residue levels among Peregrine Falcons Falco peregrinus: a global perspective. Ibis 121(2):200–204

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  Google Scholar 

  • Potter KE, Watts BD, La Guardia MJ, Harvey EP, Hale RC (2009) Polybrominated diphenyl ether flame retardants in Chesapeake Bay region, U.S.A., peregrine falcon (Falco peregrinus) eggs: urban/rural trends. Environ Toxicol Chem 28:973–981

    Article  CAS  Google Scholar 

  • Pyle P (2008) Identification Guide to North American Birds, Part II. Slate Creek Press, Bolinas, CA

    Google Scholar 

  • Rosenfield RN, Bielefeldt J, Affeldt JL, Beckmann DJ (1995) Nesting density, nest area reoccupancy, and monitoring implications for Cooper’s Hawks in Wisconsin. J Raptor Res 29(1):1–4

    Google Scholar 

  • Rosenfield RN, Bielefeldt J, Anderson RK, Smith WA (1985) Taped calls as an aid in locating Cooper’s hawk nests. Wildl Soc Bull 13:62–63

    Google Scholar 

  • Sibly RM, Newton I, Walker CH (2000) Effects of dieldrin on population growth rates of sparrowhawks 1963–1986. J Appl Ecol 37(3):540–546

    Article  CAS  Google Scholar 

  • Snyder NFR, Snyder HA, Lincer JL, Reynolds RT (1973) Organochlorines, heavy metals, and the biology of North American Accipiters. BioScience 23(5):300–305. Retrieved from http://www.jstor.org/stable/1296439

    Article  CAS  Google Scholar 

  • Stansley W, Roscoe DE (1999) Chlordane poisoning of birds in New Jersey, USA. Environ Toxicol Chem 18:2095–2099

    Article  CAS  Google Scholar 

  • Steenhof K, Newton I. (2007) Assessing nesting success and productivity. In Raptor Research Management Techniques. Hancock House Publishers LTD, Surrey, BC, pp 181–192

  • Stewart AC, Campbell RW, Dickin S (1996) Use of dawn vocalizations for detecting breeding Cooper’s hawks in an urban environment. Wildl Soc Bull 24:291–293

    Google Scholar 

  • Stout WE, Rosenfield RN (2010) Colonization, growth, and density of a pioneer Cooper’s hawk population in a large metropolitan environment. J Raptor Res 44:255–267

    Article  Google Scholar 

  • Stout WE, Rosenfield RN, Holton WG, Bielefeldt J, Street WH (2007) Nesting biology of urban Cooper’s hawks in Milwaukee, Wisconsin. J Wildl Manag 71:366–375

    Article  Google Scholar 

  • Strause KD, Zwiernik MJ, Im SH et al. (2007) Plasma to egg conversion factor for evaluating polychlorinated biphenyl and DDT exposures in great horned owls and bald eagles. Environ Toxicol Chem 26:1399–1409

    Article  CAS  Google Scholar 

  • Szeto SY, Price PM (1991) Persistence of pesticide residues in mineral and organic soils in the Fraser Valley of British Columbia. J Agric Food Chem 39:1679–1684

    Article  CAS  Google Scholar 

  • Ucán-Marin F, Arukwe A, Mortensen AS, Gabrielsen GW, Letcher RJ (2010) Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones. Environ Sci Technol 44(1):497–504. doi:10.1021/es902691u

    Article  Google Scholar 

  • Van den Steen E, Jaspers VLB, Covaci A, Neels H, Eens M, Pinxten R (2009) Maternal transfer of organochlorines and brominated flame retardants in blue tits (Cyanistes caeruleus). Environ Int 35(1):69–75. doi:10.1016/j.envint.2008.08.003

    Article  Google Scholar 

  • Venier M, Wierda M, Bowerman WW, Hites RA (2010) Flame retardants and organochlorine pollutants in bald eagle plasma from the Great Lakes region. Chemosphere 80(10):1234–1240. doi:10.1016/j.chemosphere.2010.05.043

    Article  CAS  Google Scholar 

  • Verreault J, Skaare JU, Jenssen BM, Gabrielsen GW (2004) Effects of organochlorine contaminants on thyroid hormone levels in Arctic breeding glaucous gulls, Larus hyperboreus. Environ Health Perspect 112(5):532

    Article  CAS  Google Scholar 

  • Walker CH, Newton I (1998) Effects of cyclodiene insecticides on the sparrowhawk (Accipiter nisus) in Britain - A reappraisal of the evidence. Ecotoxicology 7:185–189

    Article  CAS  Google Scholar 

  • Walker CH (1983) Pesticides and birds - mechanisms of selective toxicity. Agric Ecosyst Environ 9:211–226

    Article  CAS  Google Scholar 

  • Wan MT, Kuo J, Pasternak J (1995) Residues of endosulfan and other selected organochlorine pesticides in farm areas of the Lower Fraser Valley, British Columbia, Canada. J Environ Qual 34:1186–1193

    Article  Google Scholar 

  • Wilson LK, Elliott JE, Vernon RS, Szeto SY (2002) Retention of the active ingredients in granular phorate, terbufos, fonofos, and carbofuran in soils of the Lower Fraser Valley and their implications for wildlife poisoning. Environ Toxicol Chem 21:260–268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kristine Kirkby, Sandi Lee, and Shane Blacktopp for invaluable assistance in the field, O.W.L. Orphaned Wildlife Rehabilitation Society who loaned the two great horned owls Blinkie and Betty, used for trapping, Andy Stewart, for his insight and advice, Nature Vancouver, Paul Yorke for their insight into nest locations, Metro Vancouver, the city of Vancouver, Burnaby, Surrey and Port Moody facilitated nest finding and access,  the UC Davis Stable Isotope Facility, Environment Canada’s National Wildlife Research Center and their chemists and technician: John Corriveau, Abde Idrissez, Eric Pelletier, Jeannette Corriveau and Guy Savard are thanked for analytical and tissue preparation work. Thank you to Lindsay Davidson for her acumen and support, and to Ron Ydenberg, Tony Williams, and the Centre for Wildlife Ecology at Simon Fraser University are also thanked for their wisdom and guidance. Funding was provided by Environment Canada and by a Canadian National Science and Engineering Research Council grant (402344-2011) to John Elliott.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason M. Brogan or John E. Elliott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human or Animal Rights

This article does not contain research conducted on humans. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed according to the permits: BC Ministry of Environment permit SU12-7796, sub banding permit 10761A, and Animal Care permit 1026B-11.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brogan, J.M., Green, D.J., Maisonneuve, F. et al. An assessment of exposure and effects of persistent organic pollutants in an urban Cooper’s hawk (Accipiter cooperii) population. Ecotoxicology 26, 32–45 (2017). https://doi.org/10.1007/s10646-016-1738-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1738-3

Keywords

Navigation