Skip to main content
Log in

Toxicity of hydroxylated polychlorinated biphenyls (HO-PCBs) using the bioluminescent assay Microtox®

  • Technical Note
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Hydroxylated polychlorinated biphenyls (HO-PCBs) are toxic contaminants which are produced in the environment by biological or abiotic oxidation of PCBs. The toxicity of a suite of 23 mono-hydroxylated derivatives of PCBs and 12 parent PCBs was determined using the bacterial bioluminescent assay Microtox®. All HO-PCBs tested exhibited higher toxicity than the corresponding parent PCB, with effect concentration 50 % (EC50) ranging from 0.07 to 133 mg L−1. The highest toxicities were recorded with 4-hydroxylated derivatives of di-chlorinated biphenyls (EC50 = 0.07–0.36 mg L−1) and 2-hydroxylated derivatives of tri-chlorinated biphenyls carrying a chlorine substituent on the phenolic ring (EC50 = 0.34–0.48 mg L−1). The toxicity of HO-PCBs generally decreased when the degree of chlorination increased. Consistently with this observation, a significant positive correlation was measured between toxicity (measured by EC50) and octanol–water partition coefficient (pK ow) for the HO-PCBs under study (Pearson’s correlation coefficient, r = 0.74), which may be explained by the lower solubility and bioavailability generally associated with higher hydrophobicity. This study is the first one which assessed the toxicity of a suite of PCBs and HO-PCBs using the bioluminescent assay Microtox®, showing an inverse correlation between toxicity and hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • American Society for Testing and Materials–ASTM (2009) Standard test method for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Anderson PN, Hites RA (1996) HO radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ Sci Technol 30:1756–1763

    Article  CAS  Google Scholar 

  • Antonelli M, Mezzanotte V, Panouilleres M (2009) Assessment of peracetic acid disinfected effluents by microbiotests. Environ Sci Technol 43:6579–6584

    Article  CAS  Google Scholar 

  • Awad A, Martinez A, Marek R, Hornbuckle K (2016) Occurrence and distribution of two hydroxylated polychlorinated biphenyl congeners in Chicago air. Environ Sci Technol Lett 3:47–51

    Article  CAS  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Buckman A, Wong C, Chow E, Brown S, Solomon K, Fisk A (2006) Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. Aquat Toxicol 78:176–185

    Article  CAS  Google Scholar 

  • Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    Article  CAS  Google Scholar 

  • Chroma L, Moeder M, Kucerova P, Macek T, Mackova M (2003) Plant enzymes in metabolism of polychlorinated biphenyls. Fresenius Environ Bull 12:291–295

    CAS  Google Scholar 

  • Chu S, He Y, Xu X (1997) Determination of acute toxicity of polychlorinated biphenyls to Photobacterium phosphoreum. Bull Environ Contamin Toxicol 58:263–267

    Article  CAS  Google Scholar 

  • Espandiari P, Glauert HP, Lehmler H-J, Lee EY, Srinivasan C, Robertson LW (2004) Initiating activity of 4-chlorobiphenyl metabolites in the resistant hepatocyte model. Toxicol Sci 79:41–46

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    Article  CAS  Google Scholar 

  • Flanagan WP, May RJ (1993) Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments. Environ Sci Technol 27:2207–2212

    Article  CAS  Google Scholar 

  • Geng S, Fang J, Turner KB, Daunert S, Wei Y (2012) Accumulation and efflux of polychlorinated biphenyls in Escherichia coli. Anal Bioanal Chem 403:2403–2409

    Article  CAS  Google Scholar 

  • Grimm F, Hu D, Kania-Korwel I, Lehmler H, Ludewig G, Hornbuckle K, Duffel M, Bergman A, Robertson L (2015) Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 45:245–272

    Article  CAS  Google Scholar 

  • Hilal SH, Karickhoff SW, Carreira LA (2004) Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds. QSAR Combinat Sci 23:709–720

    Article  CAS  Google Scholar 

  • Ingersoll CG, MacDonald DD, Brumbaugh WG, Johnson BT, Kemble NE, Kunz JL, May TW, Wang N, Smith JR, Sparks DW, Ireland DS (2002) Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA. Arch Environ Contam Toxicol 43:156–167

    Article  CAS  Google Scholar 

  • Johnson BT (2005) Microtox® toxicity test. In: Blaise C, Ferard JF (eds) Small-scale freshwater environmental toxicity test methods. Kluwer Academic, Dordrecht, The Netherlands, pp 1–39

    Google Scholar 

  • Kawano M, Hasegawa J, Enomoto T, Onishi H, Nishio Y, Matsuda M, Wakimoto T (2005) Hydroxylated polychlorinated biphenyls (HO-PCBs): recent advances in wildlife contamination study. Environ Sci 12:315–324

    CAS  Google Scholar 

  • Kemble NE, Hardesty DG, Ingersoll CG, Johnson BT, Dwyer FJ, MacDonald DD (2000) An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation. Arch Environ Contam Toxiciol 39:452–461

    Article  CAS  Google Scholar 

  • Lehmler HJ, Robertson LW (2001) Synthesis of hydroxylated PCB metabolites with the Suzuki-coupling. Chemosphere 45:1119–1127

    Article  CAS  Google Scholar 

  • Letcher RJ, Klasson-Wehler E, Bergman A (2000) Methyl sulfone and hydroxylated metabolites of polychlorinated biphenyls. In: Hutzinger O, Paasivirta J (eds) Earth and environmental science, vol 3, Anthropogenic compounds. Springer, Berlin, Germany, pp 315–359

    Google Scholar 

  • Mandalakis M, Berresheim H, Stephanou E (2003) Direct evidence for destruction of polychlorobiphenyls by HO radicals in the subtropical troposphere. Environ Sci Technol 37:542–547

    Article  CAS  Google Scholar 

  • Marek R, Martinez A, Hornbuckle K (2013) Discovery of hydroxylated polychlorinated biphenyls (HO-PCBs) in sediment from a Lake Michigan waterway and original commercial Aroclors. Environ Sci Technol 47:8204–8210

    Article  CAS  Google Scholar 

  • Montano M, Gutleb A, Murk A (2013) Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife. Environ Sci Technol 47:6071–6081

    CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development–OECD/OCDE (2006) Lemna sp. growth inhibition test. OECD guidelines for the testing of chemicals. OECD, Paris, France

    Google Scholar 

  • Parnell JJ, Park J, Denef V, Tsoi T, Hashsham S, Quensen J, Tiedje JA (2006) Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614

    Article  CAS  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  Google Scholar 

  • Rufli H, Fisk PR, Girling AE, King JMH, Lange R, Lejeune X, Stelter N, Stevens C, Suteau P, Tapp J, Thus J, Versteeg DJ, Niessen HJ (1998) Aquatic toxicity testing of sparingly soluble, volatile, and unstable substances and interpretation and use of data. Ecotoxicol Environ Saf 39:72–77

    Article  CAS  Google Scholar 

  • Shen KL, Shen CF, Lu Y, Tang XJ, Zhang CK, Chen XC, Shi JY, Lin Q, Chen YX (2009) Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biol Res 42:183–187

    Article  CAS  Google Scholar 

  • Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685

    Article  CAS  Google Scholar 

  • Sondossi M, Sylvestre M, Ahmad D, Masse R (1991) Metabolism of hydroxybiphenyl and chloro-hydroxybiphenyl by biphenyl/chlorobiphenyl degrading Pseudomonas testosteroni, strain B-356. J Ind Microbiol 7:77–88

    Article  CAS  Google Scholar 

  • Takeuchi S, Shiraishi F, Kitamura S, Kuroki H, Jin K, Kojima H (2011) Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans. Toxicology 289:112–121

    Article  CAS  Google Scholar 

  • Tampal N, Lehmler H-J, Espandiari P, Malmberg T, Robertson LW (2002) Glucuronidation of hydroxylated polychlorinated biphenyls (PCBs). Chem Res Toxicol 15:1259–1266

    Article  CAS  Google Scholar 

  • Tehrani R, Van Aken B (2014) Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities. Environ Sci Pollut Res 21:6334–6345

    Article  CAS  Google Scholar 

  • Ueno D, Darling C, Alaee M, Campbell L, Pacepavicius G, Teixeira C, Muir D (2007) Detection of hydroxylated polychlorinated biphenyls (HO-PCBs) in the abiotic environment: surface water and precipitation from Ontario, Canada. Environ Sci Technol 41:1841–1848

    Article  CAS  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Iowa Superfund Basic Research Program, National Institute of Environmental Health Sciences, Grant No. P42 ES013661. The authors want to thank Hans-Joachim Lehmler (University of Iowa) for providing most PCBs and HO-PCBs used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Van Aken.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, R., Tehrani, R. & Van Aken, B. Toxicity of hydroxylated polychlorinated biphenyls (HO-PCBs) using the bioluminescent assay Microtox® . Ecotoxicology 25, 1438–1444 (2016). https://doi.org/10.1007/s10646-016-1693-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1693-z

Keywords

Navigation