Skip to main content
Log in

Toxicity of two fungicides in Daphnia: is it always temperature-dependent?

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The joint effect of increasing temperature and pollution on aquatic organisms is important to understand and predict, as a combination of stressors might be more noxious when compared to their individual effects. Our goal was to determine the sensitivity of a model organism (Daphnia spp.) to contaminants at increasing temperatures, allowing prior acclimation of the organisms to the different temperatures. Prior to exposure, two Daphnia genotypes (Daphnia longispina species complex) were acclimated to three temperatures (17, 20, and 23 °C). Afterwards, a crossed design was established using different exposure temperatures and a range of concentrations of two common fungicides (tebuconazole and copper). Daphnia life history parameters were analysed in each temperature × toxicant combination for 21 days. Temperature was the most influencing factor: Daphnia reproduced later and had lower fecundity at 17 °C than at 20 and 23 °C. Both copper and tebuconazole also significantly reduced the fecundity and survival of Daphnia at environmentally-relevant concentrations. Temperature-dependence was found for both toxicants, but the response pattern was endpoint- and genotype-specific. The combination of contaminant and high temperature often had severe effects on survival. However, unlike some literature on the subject, our results do not support the theory that increasing temperatures consistently foment increasing reproductive toxicity. The absence of a clear temperature-dependent toxicity pattern may result from the previous acclimation to the temperature regime. However, a proper framework is lacking to compare such studies and to avoid misleading conclusions for climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antunes SC, Castro BB, Goncalves F (2003) Chronic responses of different clones of Daphnia longispina (field and ephippia) to different food levels. Acta Oecol 24:S325–S332. doi:10.1016/s1146-609x(03)00026-2

    Article  Google Scholar 

  • Antunes SC, Castro BB, Goncalves F (2004) Effect of food level on the acute and chronic responses of daphnids to lindane. Environ Pollut 127:367–375. doi:10.1016/j.envpol.2003.08.015

    Article  CAS  Google Scholar 

  • Balbus JM, Boxall AB, Fenske R, McKone TE, Zeise L (2013) Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem 32:62–78. doi:10.1002/etc.2046

    Article  CAS  Google Scholar 

  • Bates B, Kundzewicz Z, Wu S, Palutikof J (2008) Climate change and water: technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  • Berenzen N, Lentzen-Godding A, Probst M, Schulz H, Schulz R, Liess M (2005) A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere 58:683–691. doi:10.1016/j.chemosphere.2004.05.009

    Article  CAS  Google Scholar 

  • Bereswill R, Golla B, Streloke M, Schulz R (2012) Entry and toxicity of organic pesticides and copper in vineyard streams: erosion rills jeopardise the efficiency of riparian buffer strips. Agric Ecosyst Environ 146:81–92. doi:10.1016/j.agee.2011.10.010

    Article  CAS  Google Scholar 

  • Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ 369:163–177. doi:10.1016/j.scitotenv.2006.05.019

    Article  CAS  Google Scholar 

  • Boersma M, De Meester L, Spaak P (1999) Environmental stress and local adaptation in Daphnia magna. Limnol Oceanogr 44:393–402

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi:10.1890/03-9000

    Article  Google Scholar 

  • Brucet S, Boix D, Quintana XD, Jensen E, Nathansen LW, Trochine C, Meerhoff M, Gascón S, Jeppesen E (2010) Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnol Oceanogr 55:1697–1711. doi:10.4319/lo.2010.55.4.1697

    Article  Google Scholar 

  • Buser CC, Spaak P, Wolinska J (2012) Disease and pollution alter Daphnia taxonomic and clonal structure in experimental assemblages. Freshw Biol 57:1865–1874. doi:10.1111/j.1365-2427.2012.02846.x

    Article  Google Scholar 

  • Castro BB, Consciência S, Gonçalves F (2007) Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones. Hydrobiologia 594:165–174. doi:10.1007/s10750-007-9074-5

    Article  Google Scholar 

  • Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and ground waters. Water Res 37:1055–1063

    Article  CAS  Google Scholar 

  • Chopelet J, Blier PU, Dufresne F (2008) Plasticity of growth rate and metabolism in Daphnia magna populations from different thermal habitats. J Exp Zool Ecol Genet Physiol 309:553–562. doi:10.1002/jez.488

    Article  CAS  Google Scholar 

  • Coors A, De Meester L (2008) Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. J Appl Ecol 45:1820–1828. doi:10.1111/j.1365-2664.2008.01566.x

    Article  Google Scholar 

  • Dang CK, Schindler M, Chauvet E, Gessner MO (2009) Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90:122–131. doi:10.1890/07-1974.1

    Article  Google Scholar 

  • De Meester L, Van Doorslaer W, Geerts A, Orsini L, Stoks R (2011) Thermal genetic adaptation in the water flea Daphnia and its impact: an evolving metacommunity approach. Integr Comp Biol 51:703–718. doi:10.1093/icb/icr027

    Article  Google Scholar 

  • Engert A, Chakrabarti S, Saul N, Bittner M, Menzel R, Steinberg CEW (2013) Interaction of temperature and an environmental stressor: Moina macrocopa responds with increased body size, increased lifespan, and increased offspring numbers slightly above its temperature optimum. Chemosphere 90:2136–2141. doi:10.1016/j.chemosphere.2012.10.099

    Article  CAS  Google Scholar 

  • Ferreira ALG, Serra P, Soares AMVM, Loureiro S (2010) The influence of natural stressors on the toxicity of nickel to Daphnia magna. Environ Sci Pollut Res 17:1217–1229. doi:10.1007/s11356-010-0298-y

    Article  CAS  Google Scholar 

  • Fischer JM, Olson MH, Williamson CE, Everhart JC, Hogan PJ, Mack JA, Rose KC, Saros JE, Stone JR, Vinebrooke RD (2011) Implications of climate change for Daphnia in alpine lakes: predictions from long-term dynamics, spatial distribution, and a short-term experiment. Hydrobiologia 676:263–277. doi:10.1007/s10750-011-0888-9

    Article  CAS  Google Scholar 

  • Fischer BB, Pomati F, Eggen RIL (2013) The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity. Sci Total Environ 449:253–259. doi:10.1016/j.scitotenv.2013.01.066

    Article  CAS  Google Scholar 

  • Forbes V, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556

    Article  CAS  Google Scholar 

  • Garric J, Migeon B, Vindimian E (1990) Lethal effects of draining on brown trout. a predictive model based on field and laboratory studies. Water Res 24:59–65. doi:10.1016/0043-1354(90)90065-E

    Article  CAS  Google Scholar 

  • Gouveia C, Liberato M, DaCamara C, Trigo R, Ramos A (2011) Modelling past and future wine production in the Portuguese douro valley. Clim Res 48:349–362. doi:10.3354/cr01006

    Article  Google Scholar 

  • Green JW (2014) Power and control choice in aquatic experiments with solvents. Ecotoxicol Environ Saf 102:142–146. doi:10.1016/j.ecoenv.2014.01.024

    Article  CAS  Google Scholar 

  • Green J, Wheeler JR (2013) The use of carrier solvents in regulatory aquatic toxicology testing: practical, statistical and regulatory considerations. Aquat Toxicol 144–145:242–249. doi:10.1016/j.aquatox.2013.10.004

    Article  Google Scholar 

  • Hanazato T (2001) Pesticide effects on freshwater zooplankton: an ecological perspective. Environ Pollut 112:1–10

    Article  CAS  Google Scholar 

  • Heugens EH, Hendriks AJ, Dekker T, van Straalen NM, Admiraal W (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284

    Article  CAS  Google Scholar 

  • Heugens E, Jager T, Creyghton R, Kraak M, Hendriks A, van Straalen N, Admiraal W (2003) Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environ Sci Technol 37(10):2145–2151

    Article  CAS  Google Scholar 

  • Heugens E, Tokkie L, Kraak M, Hendriks A, van Straalen N, Admiraal W (2006) Population growth of Daphnia magna under multiple stress conditions: joint effects of temperature, food, and cadmium. Environ Toxicol Chem 25:1399–1407

    Article  CAS  Google Scholar 

  • Holmstrup M, Bindesbøl A-M, Oostingh GJ, Duschl A, Scheil V, Köhler H-R, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  Google Scholar 

  • IPCC (2014a) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University, Cambridge

  • IPCC (2014b) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, Core Writing Team, R.K. Pachauri L.A. Meyer (eds.) IPCC, Geneva

  • Jansen M, Coors A, Stoks R, De Meester L (2011a) Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia. Ecotoxicology 20:543–551. doi:10.1007/s10646-011-0627-z

    Article  CAS  Google Scholar 

  • Jansen M, De Meester L, Cielen A, Buser CC, Stoks R (2011b) The interplay of past and current stress exposure on the water flea Daphnia. Funct Ecol 25:974–982. doi:10.1111/j.1365-2435.2011.01869.x

    Article  Google Scholar 

  • Kegley SE, Hill BR, Orme S, Choi, AH, (2014). PAN Pesticide Database. Pestic. Action Netw., North America Oakland URL http://www.pesticideinfo.org

  • Kim J, Park J, Kim PG, Lee C, Choi K, Choi K (2010) Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology 19:662–669. doi:10.1007/s10646-009-0440-0

    Article  CAS  Google Scholar 

  • Knillmann S, Stampfli NC, Noskov YA, Beketov MA, Liess M (2013) Elevated temperature prolongs long-term effects of a pesticide on Daphnia spp. due to altered competition in zooplankton communities. Glob Chang Biol 19:1598–1609. doi:10.1111/gcb.12151

    Article  Google Scholar 

  • Komárek M, Cadková E, Chrastný V, Bordas F, Bollinger J-C (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151. doi:10.1016/j.envint.2009.10.005

    Article  Google Scholar 

  • Krienitz L, Bock C, Nozaki H, Wolf M (2011) SSU rRNA gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent-shaped chlorophyta1. J Phycol 47:880–893. doi:10.1111/j.1529-8817.2011.01010.x

    Article  Google Scholar 

  • Lagerspetz KYH, Vainio LA (2006) Thermal behaviour of crustaceans. Biol Rev Camb Philos Soc 81:237–258. doi:10.1017/S1464793105006998

    Article  Google Scholar 

  • Lampert W (2006) Daphnia: model herbivore, predator and prey. Polish J Ecol 54:607–620

    Google Scholar 

  • Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22:1050–1064. doi:10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  • Loureiro C, Castro BB, Pereira JL, Gonçalves F (2011) Performance of standard media in toxicological assessments with Daphnia magna: chelators and ionic composition versus metal toxicity. Ecotoxicology 20:139–148. doi:10.1007/s10646-010-0565-1

    Article  CAS  Google Scholar 

  • Loureiro C, Castro BB, Cuco AP, Pedrosa MA, Gonçalves F (2013) Life-history responses of salinity-tolerant and salinity-sensitive lineages of a stenohaline cladoceran do not confirm clonal differentiation. Hydrobiologia 702:73–82. doi:10.1007/s10750-012-1308-5

    Article  CAS  Google Scholar 

  • Loureiro C, Cuco AP, Claro MT, Santos JI, Pedrosa MA, Gonçalves F, Castro BB (2015) Progressive acclimation alters interaction between salinity and temperature in experimental Daphnia populations. Chemosphere 139:126–132. doi:10.1016/j.chemosphere.2015.05.081

    Article  CAS  Google Scholar 

  • Luoto TP, Nevalainen L (2013) Climate change impacts on zooplankton and benthic communities in Lake Unterer Giglachsee (Niedere Tauern Alps, Austria). Int Rev Hydrobiol 98:80–88. doi:10.1002/iroh.201301461

    Article  Google Scholar 

  • McCallum H (1999) Rate of increase of a population. In: Population parameters: estimation for ecological models. Blackwell Science Ltd, Oxford. doi:10.1002/9780470757468.ch5

  • Messiaen M, De Schamphelaere KAC, Muyssen BTA, Janssen CR (2010) The micro-evolutionary potential of Daphnia magna population exposed to temperature and cadmium stress. Ecotoxicol Environ Saf 73:1114–1122. doi:10.1016/j.ecoenv.2010.05.006

    Article  CAS  Google Scholar 

  • Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67:1156. doi:10.2307/1938671

    Article  Google Scholar 

  • Meyer JS, Ingersoll CG, McDonald LL (1987) Sensitivity analysis of population growth rates estimated from cladoceran chronic toxicity tests. Environ Toxicol Chem 6:115–126. doi:10.1002/etc.5620060206

    Article  CAS  Google Scholar 

  • Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M (2013) Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem 32:49–61. doi:10.1002/etc.2045

    Article  CAS  Google Scholar 

  • Moreira L, (2013). Exportação de nutrientes e pesticidas em áreas vitícolas. Master Thesis, University of Aveiro

  • Muyssen BTA, Messiaen M, Janssen CR (2010) Combined cadmium and temperature acclimation in Daphnia magna: physiological and sub-cellular effects. Ecotoxicol Environ Saf 73:735–742. doi:10.1016/j.ecoenv.2009.12.018

    Article  CAS  Google Scholar 

  • Neves M, Castro BB, Vidal T, Vieira R, Marques JC, Coutinho JAP, Gonçalves F, Gonçalves AMM (2015) Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of a herbicide (Primextra® Gold TZ) and its active ingredient (S-metolachlor). Ecol. Indic. 53:220–230. doi:10.1016/j.ecolind.2015.01.031

    Article  CAS  Google Scholar 

  • Nielsen DL, Brock MA (2009) Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Clim Change 95:523–533. doi:10.1007/s10584-009-9564-8

    Article  CAS  Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986. doi:10.1016/j.envint.2009.02.006

    Article  CAS  Google Scholar 

  • Ochoa-Acuña HG, Bialkowski W, Yale G, Hahn L (2009) Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna. Ecotoxicology 18:440–446. doi:10.1007/s10646-009-0298-1

    Article  Google Scholar 

  • OECD 2012. Test No. 211: Daphnia magna reproduction test, OECD guidelines for the testing of chemicals, section 2. OECD. doi:10.1787/9789264185203-en

  • Paul RJ, Mertenskötter A, Pinkhaus O, Pirow R, Gigengack U, Buchen I, Koch M, Horn W, Zeis B (2012) Seasonal and interannual changes in water temperature affect the genetic structure of a Daphnia assemblage (D. longispina complex) through genotype-specific thermal tolerances. Limnol Oceanogr 57:619–633. doi:10.4319/lo.2012.57.2.0619

    Article  Google Scholar 

  • Quinn G, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University, Cambridge

    Book  Google Scholar 

  • Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment-effect of sampling frequency. Environ Pollut 158:737–748. doi:10.1016/j.envpol.2009.10.014

    Article  CAS  Google Scholar 

  • R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna http://www.r-project.org/

  • Ritz C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ Toxicol Chem 29:220–229. doi:10.1002/etc.7

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay Analysis using R. J Stat Softw 12:1–22

    Article  Google Scholar 

  • Sancho E, Villarroel MJ, Andreu E, Ferrando MD (2009) Disturbances in energy metabolism of Daphnia magna after exposure to tebuconazole. Chemosphere 74:1171–1178. doi:10.1016/j.chemosphere.2008.11.076

    Article  CAS  Google Scholar 

  • Scherer C, Seeland A, Oehlmann J, Müller R (2013) Interactive effects of xenobiotic, abiotic and biotic stressors on Daphnia pulex–results from a multiple stressor experiment with a fractional multifactorial design. Aquat Toxicol 138–139:105–115. doi:10.1016/j.aquatox.2013.04.014

    Article  Google Scholar 

  • Seeland A, Oehlmann J, Müller R (2012) Aquatic ecotoxicity of the fungicide pyrimethanil: effect profile under optimal and thermal stress conditions. Environ Pollut 168:161–169. doi:10.1016/j.envpol.2012.04.020

    Article  CAS  Google Scholar 

  • Seeland A, Albrand J, Oehlmann J, Müller R (2013) Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change. Environ Pollut 174:1–9. doi:10.1016/j.envpol.2012.10.020

    Article  CAS  Google Scholar 

  • Stampfli NC, Knillmann S, Liess M, Beketov MA (2011) Environmental context determines community sensitivity of freshwater zooplankton to a pesticide. Aquat Toxicol 104:116–124. doi:10.1016/j.aquatox.2011.04.004

    Article  CAS  Google Scholar 

  • Stampfli NC, Knillmann S, Liess M, Noskov YA, Schäfer RB, Beketov MA (2013) Two stressors and a community: effects of hydrological disturbance and a toxicant on freshwater zooplankton. Aquat Toxicol 127:9–20. doi:10.1016/j.aquatox.2012.09.003

    Article  CAS  Google Scholar 

  • Tassou KT, Schulz R (2012) Combined effects of temperature and pyriproxyfen stress in a full life-cycle test with Chironomus riparius (Insecta). Environ Toxicol Chem 31:2384–2390. doi:10.1002/etc.1969

    Article  CAS  Google Scholar 

  • Van Doorslaer W, Stoks R, Jeppesen E, De Meester L (2007) Adaptive microevolutionary responses to simulated global warming in Simocephalus vetulus: a mesocosm study. Glob Chang Biol 13:878–886. doi:10.1111/j.1365-2486.2007.01317.x

    Article  Google Scholar 

  • Van Doorslaer W, Stoks R, Duvivier C, Bednarska A, De Meester L (2009a) Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63:1867–1878. doi:10.1111/j.1558-5646.2009.00679.x

    Article  Google Scholar 

  • Van Doorslaer W, Vanoverbeke J, Duvivier C, Rousseaux S, Jansen M, Jansen B, Feuchtmayr H, Atkinson D, Moss B, Stoks R, De Meester L (2009b) Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob Chang Biol 15:3046–3055. doi:10.1111/j.1365-2486.2009.01980.x

    Article  Google Scholar 

  • Van Doorslaer W, Stoks R, Swillen I, Feuchtmayr H, Atkinson D, Moss B, De Meester L (2010) Experimental thermal microevolution in community-embedded Daphnia populations. Clim Res 43:81–89. doi:10.3354/cr00894

    Article  Google Scholar 

  • Wilson RRS, Franklin CCE (2002) Testing the beneficial acclimation hypothesis. Trends Ecol Evol 17:66–70. doi:10.1016/S0169-5347(01)02384-9

    Article  Google Scholar 

  • Winder M, Schindler D (2004) Climate Change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106. doi:10.1890/04-0151

    Article  Google Scholar 

  • Wojtal-Frankiewicz A (2011) The effects of global warming on Daphnia spp. population dynamics: a review. Aquat Ecol 46:37–53. doi:10.1007/s10452-011-9380-x

    Article  Google Scholar 

  • Yin M, Laforsch C, Lohr JN, Wolinska J (2011) Predator-induced defense makes Daphnia more vulnerable to parasites. Evolution 65:1482–1488. doi:10.1111/j.1558-5646.2011.01240.x

    Article  Google Scholar 

  • Zeis B, Maurer J, Pinkhaus O, Bongartz E, Paul RJ (2004) A swimming activity assay shows that the thermal tolerance of Daphnia magna is influenced by temperature acclimation. Can J Zool 82:1605–1613. doi:10.1139/z04-141

    Article  Google Scholar 

  • Zhang L, Gibble R, Baer KN (2003) The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna. Ecotoxicol Environ Saf 55:330–337. doi:10.1016/S0147-6513(02)00081-7

    Article  CAS  Google Scholar 

  • Zubrod JP, Bundschuh M, Schulz R (2010) Effects of subchronic fungicide exposure on the energy processing of Gammarus fossarum (Crustacea; Amphipoda). Ecotoxicol Environ Saf 73:1674–1680. doi:10.1016/j.ecoenv.2010.07.046

    Article  CAS  Google Scholar 

  • Zubrod JP, Baudy P, Schulz R, Bundschuh M (2014) Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum. Aquat Toxicol 150:133–143. doi:10.1016/j.aquatox.2014.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Mark Phillipo for linguistic help.

Funding

This work was supported by European funds through COMPETE2020 (European Regional Development Fund) and by national funds through the Portuguese Science Foundation (FCT I.P.) within the strategic programmes UID/AMB/50017/2013 (CESAM) and UID/BIA/04050/2013 (CBMA), as well as by the research project VITAQUA (PTDC/AAC-AMB/112438/2009). Ana P. Cuco and Nelson Abrantes are individual recipients of, respectively, a PhD Grant (SFRH/BD/81661/2011) and a researcher contract (IF/01198/2014) from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Abrantes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study did not involve any research conducted on human participants. No specific permissions were necessary, because the existing legislation on the welfare of experimental animals is not applicable and the study did not involve the collection of endangered or protected species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuco, A.P., Abrantes, N., Gonçalves, F. et al. Toxicity of two fungicides in Daphnia: is it always temperature-dependent?. Ecotoxicology 25, 1376–1389 (2016). https://doi.org/10.1007/s10646-016-1689-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1689-8

Keywords

Navigation