Skip to main content

Advertisement

Log in

Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Gene expression studies could provide insight into the physiological mechanisms and strategies used by plants under stress conditions. Selection of suitable internal control gene(s) is essential to accurately assess gene expression levels. For the mangrove plant, Aegiceras corniculatum, reliable reference genes to normalize real-time quantitative PCR data have not been previously investigated. In this study, the expression stabilities of five candidate reference genes [glyceraldehydes-3-phosphate dehydrogenase (GAPDH), 18SrRNA, β-Actin, 60S ribosomal protein L2, and elongation factor-1-A] were determined in leaves of A. corniculatum treated by cold, drought, salt, heavy metals, and pyrene and in different tissues of A. corniculatum under normal condition. Two software programs (geNorm and NormFinder) were employed to analyze and rank the tested genes. Results showed that GAPDH was the most suitable reference gene in A. corniculatum and the combination of two or three genes was recommended for greater accuracy. To assess the value of these tested genes as internal controls, the relative quantifications of CuZnSOD gene were also conducted. Results showed that the relative expression levels of CuZnSOD gene varied depending on the internal reference genes used, which highlights the importance of the choice of suitable internal controls in gene expression studies. Furthermore, the results also confirmed that GAPDH was a suitable reference gene for qPCR normalization in A. corniculatum under abiotic stresses. Identification of A. corniculatum reference gens in a wide range of experimental samples will provide a useful reference in future gene expression studies in this species, particularly involving similar stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  • Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21:389

    Article  CAS  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  Google Scholar 

  • Basyuni M, Kinjo Y, Baba S, Shinzato N, Iwasaki H, Siregar EBM, Oku H (2010) Isolation of salt stress tolerance genes from roots of mangrove plant, Rhizophora stylosa Griff., using PCR-based suppression subtractive hybridization. Plant Mol Bio Rep 29:533–543

    Article  Google Scholar 

  • Burchett M, Clarke C, Field C, Pulkownik A (2006) Growth and respiration in two mangrove species at a range of salinities. Physiol Plant 75:299–303

    Article  Google Scholar 

  • Carvalho K, de Campos MKF, Pereira LFP, Vieira LGE (2010) Reference gene selection for real-time quantitative polymerase chain reaction normalization in “Swingle” citrumelo under drought stress. Anal Biochem 402:197–199

    Article  CAS  Google Scholar 

  • Czechowski T (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  Google Scholar 

  • Fu X, Huang Y, Deng S, Zhou R, Yang G, Ni X, Li W, Shi S (2005) Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci 169:147–154

    Article  CAS  Google Scholar 

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89:237–250

    Article  Google Scholar 

  • Huang G-Y, Wang Y-S (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemoshpere 77:1026–1029

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99:86–92

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865–876

    Article  CAS  Google Scholar 

  • Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, Baillif P (2006) Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar Chem 98:1–17

    Article  CAS  Google Scholar 

  • Migocka M, Papierniak A (2010) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breed 3:343–357

    Google Scholar 

  • Nicot N, Hausman JF, Hoffman L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  Google Scholar 

  • Peng YL, Wang YS, Cheng H, Sun CC, Wu P, Wang LY, Fei J (2013) Characterization and expression analysis of three CBF/DREB 1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140–141:68–76

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2004–2007

    Article  Google Scholar 

  • Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Rep 28:597–604

    Article  CAS  Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalization of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  CAS  Google Scholar 

  • Selvey S, Thompson E, Matthaei K, Lea RA, Irving MG, Griffiths L (2001) Beta-actin: an unsuitable internal control for RT-PCR. Mol Cell Probe 15:307

    Article  CAS  Google Scholar 

  • Tam N, Wong Y, Wong M (2009) Novel technology in pollutant removal at source and bioremediation. Ocean Coast Manag 52:368–373

    Article  Google Scholar 

  • Tomlinson PB (1994) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell Online 20:1736

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Article  Google Scholar 

  • Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408:337–339

    Article  CAS  Google Scholar 

  • Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:40–50

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 41430966 and 41176101), the Projects of Guangzhou Science and Technology (No. 15020024), the key projects in the National Science and Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2012BAC07B0402), and the projects of the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-SW-132).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Shao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, YL., Wang, YS. & Gu, JD. Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses. Ecotoxicology 24, 1714–1721 (2015). https://doi.org/10.1007/s10646-015-1487-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1487-8

Keywords

Navigation