, Volume 24, Issue 4, pp 735–745 | Cite as

Lead exposure affects health indices in free-ranging ducks in Argentina

  • Hebe FerreyraEmail author
  • Pablo M. Beldomenico
  • Krysten Marchese
  • Marcelo Romano
  • Andrea Caselli
  • Ana I. Correa
  • Marcela Uhart


Numerous experiments under controlled conditions and extensive investigation of waterfowl die-offs have demonstrated that exposure to lead from spent gunshot is highly detrimental to the health of waterfowl. However, few studies have focused on examining the more subtle sub-lethal effects of lead toxicity on ducks in non-experimental settings. In our study, the health of ducks exposed to varying amounts of lead under natural conditions was assessed by correlating individual lead exposure with relevant indices of health. Based on hunter-killed wild ducks in Argentina, we measured spleen mass, body condition, examined bone marrow smears, and determined Ca and P in bone tissue. In free-ranging live-trapped ducks we determined basic hematology and aminolevulinic acid dehydratase activity. Using multivariate analyses, we found that, when controlling for the potential confounding effect of site type, year, duck species, body mass and age, lead levels in the liver were negatively associated with body condition and spleen mass. Spleen mass was also lower in ducks with higher lead levels in their bones. In live ducks, high blood lead levels were associated with low packed cell volume and red cell morphologic abnormalities. These findings suggest that, despite the lack of recorded lead-induced mortality in the region, lead exposure results in less conspicuous but still significant impacts on the health of ducks, which could have serious implications for their conservation. Moreover, this evidence further supports the need for urgently banning lead shot in the region.


Argentina Effects Health Hunting Lead shot Waterfowl Wetlands 



This study was funded by Morris Animal Foundation, Wildlife Conservation Society, Aves Argentinas, and the Association of Zoo Veterinary Technicians. Anonymous reviewers provided helpful comments that improved the manuscript. Special thanks to R. Biasatti, M. E. Hartmann, P. Favre, F. Villemin, R. Sodero, L. Leones, A. Semenov, D. Denies and M. Prodel, for their outstanding support throughout the study. We acknowledge the efforts of many volunteers and veterinary students from Universidad Nacional del Litoral, Universidad Nacional del Centro de la Provincia de Buenos Aires, and Universidad Nacional de Río Cuarto during field and laboratory work. Research permits were granted by governments of Santa Fe and Corrientes provinces.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akaike HA (1994) New look at the statistical model identification. AC19, IEEE transactions automatic control, pp 716–723Google Scholar
  2. Álvarez Lloret P, Rodríguez Navarro A, Romanek CS, Ferrandis P, Martínez Haro M, Mateo R (2014) Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa). Sci Total Environ 466:34–39CrossRefGoogle Scholar
  3. Ardia DR (2005) Cross-fostering reveals an effect of spleen size and nest temperatures on immune responses in nestling European starlings. Oecologia 145:327–334CrossRefGoogle Scholar
  4. Armstrong BG, Sloan M (1989) Regression models for epidemiologic data. Am J Epidemiol 129:191–204Google Scholar
  5. Bates FY, Barnes DM, Higbee JM (1968) Lead toxicosis in mallard ducks. Bull Wildl Dis Assoc 4:116–125CrossRefGoogle Scholar
  6. Beldomenico PM, Begon M (2010) Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol 25:21–27CrossRefGoogle Scholar
  7. Blanco DE, López-Lanús B, Días RA, Azpiroz A, Rilla F (2006) Uso de arroceras por chorlos y playeros migratorios en el sur de América del Sur. Implicancias de conservación y manejo. Wetlands International, Buenos Aires, p 114Google Scholar
  8. Bono DG, Braca G (1973) Lead poisoning in domestic and wild ducks. Avian Pathol 2:195–209CrossRefGoogle Scholar
  9. Burch HB, Siegel AL (1971) Improved method for measurement of δ-aminolevulinic acid dehydratase activity of human erythrocytes. Clin Chem 17:1038–1041Google Scholar
  10. Campbell WT (2012) Hematology of birds. In: Thrall MA, Weiser G, Allison R, Campbell TW (eds) Veterinary hematology and clinical chemistry. Chap 19, 2nd edn. Wiley-Blackwell, Ames, pp 238–276Google Scholar
  11. Capllonch PD, Ortiz D, Soria K (2008) Importancia del Litoral Fluvial Argentino como Corredor Migratorio de Aves. FG Aceñolaza (Coord.- Ed.). Temas de la Biodiversidad del Litoral III. INSUGEO, Miscelánea 17:107–120Google Scholar
  12. Chappard D, Baslé MF, Legrand E, Audran M (2011) New laboratory tools in the assessment of bone quality. Osteoporosis Int 22:2225–2240CrossRefGoogle Scholar
  13. Clemens ET, Krook L, Aronso AL, Stevens CE (1975) Pathogenesis of lead shot poisoning in the Mallard duck. Cornell Vet 62:248–285Google Scholar
  14. Coles EH (1986) Erythrocytes. In: Coles EH (ed) Veterinary clinical pathology, 4th edn. WB Saunders, Philadelphia, p 32Google Scholar
  15. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  16. De Francisco N, Ruiz Troya JD, Agüera EI (2003) Lead and lead toxicity in domestic and free living birds. Avian Pathol 32:3–13CrossRefGoogle Scholar
  17. Eisler RR (2000) Lead. Handbook of the chemical risk assessment, health hazards to humans, plants, and animals, volume I: metals. Lewis, Boca Raton, pp 201–299CrossRefGoogle Scholar
  18. Fair JM, Myers OB (2002) The ecological and physiological costs of lead shot and immunological challenge to developing western bluebirds. Ecotoxicology 11:199–208CrossRefGoogle Scholar
  19. Faith RE, Luster MI, Kimmel CA (1979) Effect of chronic developmental lead exposure on cell mediated immune functions. Clin Exp Immunol 35:413–420Google Scholar
  20. Ferreyra H, Romano M, Uhart M (2009) Recent and chronic exposure of wild ducks to lead in human-modified wetlands in Santa Fe Province, Argentina. J Wildl Dis 45:823–827CrossRefGoogle Scholar
  21. Ferreyra H, Romano M, Beldomenico P, Caselli A, Correa A, Uhart M (2014) Lead gunshot pellet ingestion and tissue lead levels in wild ducks from Argentine hunting hotspots. Ecotox Environ Saf 103:74–81CrossRefGoogle Scholar
  22. Finley M, Dieter MP (1978) Erythrocyte δ-aminolevulinic acid dehydratase activity in mallard ducks: duration of inhibition after lead shot dosage. J Wildl Manag 42:621–625CrossRefGoogle Scholar
  23. Finley MT, Dieter MP, Locke NL (1976) Sublethal effects of chronic lead ingestion in mallard ducks. J Toxicol Environ Health 1:929–937CrossRefGoogle Scholar
  24. Flint PL, Grand JB (1997) Survival of spectacled eider adult females and ducklings during brood rearing. J Wildl Manag 61:217–221CrossRefGoogle Scholar
  25. Franson JC, Pain DJ (2011) Lead in birds. In: Beyer WN, Meador JP (eds) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press, Boca Raton, pp 563–593CrossRefGoogle Scholar
  26. Friend M (1999) Lead. In: Friend M, Franson JC (eds) Field manual of wildlife diseases. General field procedures and diseases of birds. USGS Biological Resources Division Information and Technology Report 1999-001, Madison, USA, pp 317–334Google Scholar
  27. Friend M, Franson JC, Anderson WL (2009) Biological and societal dimensions of lead poisoning in birds in the USA. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA. doi: 10.4080/ilsa.2009.0104
  28. Gangoso L, Alvarez-Lloret P, Rodriguez-Navarro A, Mateo R, Hiraldo F, Donazar JA (2009) Long term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ Pollut 157:569–574CrossRefGoogle Scholar
  29. García-Garduño MV, Reyes-Gasga J (2006) La Hidroxiapatita, su importancia en los tejidos mineralizados y su aplicación biomédica.TIP Revista Especializada en Ciencias Químico-Biológicas 9(2) 90–95Google Scholar
  30. Gasparik J, Venglarcik J, Slamecka J, Kropil R, Smehyl P, Kopecky J (2012) Distribution of lead in selected organs and its effect on reproduction parameters of pheasants (Phasianus colchicus) after an experimental per oral administration. J Environ Sci Health A 47:1267–1271CrossRefGoogle Scholar
  31. Geens A, Dauwe T, Bervoets L, Blust R, Eens M (2010) Haematological status of wintering great tits (Parus major) along a metal pollution gradient. Sci Total Environ 5:1174–1179CrossRefGoogle Scholar
  32. Grasman KA (2002) Assessing immunological function in toxicological studies of avian wildlife. Integr Comp Biol 42:34–42CrossRefGoogle Scholar
  33. Grasman KA, Scanlon PF (1995) Effects of acute lead ingestion and diet on antibody and T-cell-mediated immunity in Japanese quail. Arch Environ Contam Toxicol 28:161–167Google Scholar
  34. Hohman WL, Pritchert RD, Pace RM, Woolingtonand DW, Helm R (1990) Influence of ingested lead on body mass of wintering canvasbacks. J Wildl Manag 54(2):211–215CrossRefGoogle Scholar
  35. John J (1994) The avian spleen: a neglected organ. Quart Rev Biol 69:327–351CrossRefGoogle Scholar
  36. Jordan JS, Bellrose FC (1951) Lead poisoning in wild waterfowl. 111. Nat His Surv Biol Notes 26:27Google Scholar
  37. Kim C, Storer BE (1996) Reference values for Cook’s distance. Commun Stat Simul C 25(3):691–708CrossRefGoogle Scholar
  38. Lesterhuis AJ (2011) Uso de arroceras por aves en el noreste de Argentina. In: Blanco DE, Beltrán J, de la Balze V (eds) Conservación de los recursos acuáticos y la biodiversidad en arroceras del noreste de Argentina. Fundación humedales/Wetlands International, Bs. As. Argentina, 63–79Google Scholar
  39. Locke LN, Thomas NJ (1996) Lead poisoning of waterfowl and raptors, chap 10. In: Fairbrother A, Locke LN, Hoff GL (eds) Noninfectious diseases of wildlife, 2nd edn. Iowa State University Press, Ames, pp 108–117Google Scholar
  40. Lumeij JT (1985) Clinicopathologic aspects of lead poisoning in birds: a review. Vet Quart 7(2):133–138CrossRefGoogle Scholar
  41. Mateo R (2009) Lead poisoning in wild birds in Europe and the regulations adopted by different countries. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise. doi: 10.4080/ilsa.2009.0107
  42. Mateo R, Dolz JC, Aguilar-Serrano JM, Belliure J, Guitart R (1997) An outbreak of lead poisoning in Greater Flamingos (Phoenicopterus ruber roseus) in Spain. J Wildl Dis 33:131–134CrossRefGoogle Scholar
  43. Mateo R, Beyer WN, Spann J, Hoffman D, Ramis A (2003) Relationship between oxidative stress, pathology, and behavioral signs of lead poisoning in Mallards. J Toxicol Environ Health A Curr Issues 66(17):1371–1389. doi: 10.1080/15287390306390 CrossRefGoogle Scholar
  44. McEwen BS, Wingfield JC (2010) What’s in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57(2):105. doi: 10.1016/j.yhbeh.2009.09.011 CrossRefGoogle Scholar
  45. McMurry ST, Lochmiller RL, Chandra SAM, Qualls CW Jr (1995) Sensitivity of selected immunological, hematological, and reproductive parameters in the cotton rat (Sigmodon hsipidus) to subchronic lead exposure. J Wildl Dis 31(2):193–204CrossRefGoogle Scholar
  46. Mitchell EB, Johns J (2008) Avian hematology and related disorders. Vet Clin Exot Animal 11:501–522CrossRefGoogle Scholar
  47. Møller AP, Erritzøe J (1998) Host immune defence and migration in birds. Evol Ecol 12:945–953CrossRefGoogle Scholar
  48. Nyeland J, Fox AD, Kahlert J, Therkildsen OR (2003) Field methods to assess pectoral muscle mass in moulting geese. Wildl Biol 9:155–159Google Scholar
  49. O’halloran J, Dugan PF, Myers AA (2008) Biochemical and haematological values for mute swans (Cygnus olor): effects of acute lead poisoning. Avian Pathol 17(3):667–678CrossRefGoogle Scholar
  50. Pain DJ (1989) Haematological parameters as predictors of blood Lead and Indicators of lead poisoning in the black duck (Anas rubripes). Environ Pollut 60:67–81CrossRefGoogle Scholar
  51. Pain DJ, Rattner BA (1988) Mortality and hematology associated with the ingestion of one number four lead shot in black ducks, Anas rubripes. Biol Environ Contam Toxicol 40:159–164CrossRefGoogle Scholar
  52. Pattee OH, Pain DJ (2003) Chapter 15: LEAD in the Environment. In: Hoffman DJ Rattner BA, Burton Jr GA, John Cairns Jr (eds) Handbook of ecotoxicology, 2nd edn. CRC Press, Boca Raton, pp 373–399Google Scholar
  53. Pokras MA, Kneeland MR (2009) Understanding lead uptake and effects across species lines: a conservation medicine approach. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise. doi: 10.4080/ilsa.2009.0101
  54. Pounds JG, Rosen JF (1986) Cellular metabolism of lead: a kinetic analysis in cultured osteoclastic bone cells. Toxicol Appl Pharmacol 83:531–545CrossRefGoogle Scholar
  55. Pounds JG, Long GJ, Rosen JF (1991) Cellular and molecular toxicity of lead in bone. Environ Health Perspect 91:17–32CrossRefGoogle Scholar
  56. Rattner BA, Fleming WJ, Bunck CM (1989) Comparative Toxicity of lead shot in black ducks (Anas rubripes) and Mallard (Anas platyrhynchos). J Wildl Dis 25(2):175–183CrossRefGoogle Scholar
  57. Rocke TE, Samuel MD (1991) Effects of lead shot ingestion on selected cell of the mallard immune system. J Wildl Dis 27(1):1–9CrossRefGoogle Scholar
  58. Rodriguez JJ, Oliveira PA, Fidalgo LE, Ginja MMD, Silvestre AM, Ordoñez C, Serantes AE, Gonzalo-Orden JM, Orden MA (2010) Lead toxicity in captive and wild mallards (Anas platyrhynchos) in Spain. J Wildl Dis 46(3):854–863CrossRefGoogle Scholar
  59. Scheuhammer AM (1987) Erythrocyte δ-aminolevulinic acid dehydratase in birds. II. The effects of lead exposure in vivo. Toxicology 45:165–175CrossRefGoogle Scholar
  60. Smits JE, Bortolotti GR, Baos R, Blas J, Hiraldo F, Xie Q (2005) Skeletal pathology in White storks (Ciconia ciconia) associated with heavy metal contamination in southwestern Spain. Toxicol Pathol 33:441–448CrossRefGoogle Scholar
  61. Smits J, Bortolotti G, Baos R, Jovani R, Tella JL, Hoffmann W (2007) Disrupted bone metabolism in contaminant-exposed white storks (Ciconia ciconia) in southwestern Spain. Environ Pollut 45:538–544CrossRefGoogle Scholar
  62. Stutzenbacher C, Brown K, Lobpries D (1986) Special report: an assessment of the accuracy of documenting waterfowl die-offs in a Texas coastal marsh. In: Feierabend J, Russel A (eds) Lead poisoning in wild waterfowl. National Wildlife Federation, Washington, DC, pp 88–95Google Scholar
  63. Tranel MA, Kimmel RO (2009) Impacts of lead ammunition on wildlife, the environment, and human health—a literature review and implications for Minnesota. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA. doi: 10.4080/ilsa.2009.0307
  64. Turner HC (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104CrossRefGoogle Scholar
  65. U.S. Fish and Wildlife Service (1990) Lead poisoning in waterfowl. U.S. Fish and Wildlife Service, Washington, DC, 1-/15Google Scholar
  66. Zaccagnini ME (2002) Los patos en las arroceras del noreste de Argentina: ¿plagas o recursos para caza deportiva y turismo sostenible? In: Blanco DE, Beltrán J, De La Balze V (eds) Primer taller sobre la caza de aves acuáticas. Hacia una estrategia para el uso sustentable de los recursos de los humedales. Wetlands International, Buenos Aires, pp 35–57Google Scholar
  67. Zaccagnini ME, Venturino JJ (1992) Ducks in Argentina—a pest or a tourist hunting resource? A lesson for sustainable use. In: Moser M, Prentice RC, van Vessem J (eds) Waterfowl and wetland conservation in the 1990 s—a global perspective. Proceedings of IWRB symposium, St. Petersburg Beach, USA. IWRB Special Publ. No. 26, Slimbridge, Gran Bretaña, pp 97–101Google Scholar
  68. Zwank PJ, Vernon LW, Shealy PM, Newsom JD (1985) Lead toxicosis in waterfowl in two major wintering areas in Louisiana. Wildl Soc B 13(1):17–26Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hebe Ferreyra
    • 1
    Email author
  • Pablo M. Beldomenico
    • 2
  • Krysten Marchese
    • 3
  • Marcelo Romano
    • 4
  • Andrea Caselli
    • 1
    • 5
  • Ana I. Correa
    • 2
  • Marcela Uhart
    • 1
    • 5
    • 6
  1. 1.Global Health ProgramWildlife Conservation SocietyBuenos AiresArgentina
  2. 2.Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL)Universidad Nacional del Litoral – Consejo Nacional de Investigaciones Científicas y TécnicasEsperanzaArgentina
  3. 3.Bronx ZooWildlife Conservation SocietyBronxUSA
  4. 4.Centro de Investigaciones en Biodiversidad y Ambiente (ECOSUR)RosarioArgentina
  5. 5.Facultad de Ciencias VeterinariasUniversidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina
  6. 6.One Health Institute, School of Veterinary MedicineUniversity of California, DavisDavisUSA

Personalised recommendations