Skip to main content
Log in

δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Environmental isotopology of sulfur and oxygen of dissolved sulfate in groundwater was conducted in the Hetao Plain, northwestern China, aiming to better understand the processes controlling arsenic mobilization in arsenic-rich aqueous systems. A total of 22 groundwater samples were collected from domestic wells in the Hetao Plain. Arsenic concentrations ranged from 11.0 to 388 μg/L. The δ34S-SO4 and δ18O-SO4 values of dissolved sulfate covered a range from +1.48 to +22.4 ‰ and +8.17 ‰ to +14.8 ‰ in groundwater, respectively. The wide range of δ34S-SO4 values reflected either an input of different sources of sulfate, such as gypsum dissolution and fertilizer application, or a modification from biogeochemical process of bacterial sulfate reduction. The positive correlation between δ34S-SO4 and arsenic concentrations suggested that bacteria mediated processes played an important role in the mobilization of arsenic. The δ18O-SO4 values correlated non-linearly with δ34S-SO4, but within a relatively narrow range (+8.17 to +14.8 ‰), implying that complexities inherent in the sulfate-oxygen (O-SO4 2−) origins, for instance, water-derived oxygen (O-H2O), molecular oxygen (O-O2) and isotope exchanging with dissolved oxides, are accounted for oxygen isotope composition of dissolved sulfate in groundwater in the Hetao Plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharon P, Fu B (2003) Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem Geol 195:201–218

    Article  CAS  Google Scholar 

  • Bolliger ME, Schroth MH, Bernasconi SM, Kleikemper J, Zeyer J (2001) Sulfur isotope geochemistry during microbial sulfate-reduction by toluene-degrading bacteria. Geochim Cosmochim Acta 65:3289–3298

    Article  CAS  Google Scholar 

  • Bostick BC, Fendorf S, Brown GE (2005) In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineral Mag 69:781–795

    Article  CAS  Google Scholar 

  • Böttcher ME, Smock AM, Cypionka H (1998) Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature. Chem Geol 146:127–134

    Article  Google Scholar 

  • Brunner B, Bernasconi SM, Kleikemper J, Schroth MH (2005) A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochim Cosmochim Acta 69:4773–4785

    Article  CAS  Google Scholar 

  • Burnol A, Garrido F, Baranger P, Joulian C, Dictor MC, Bodenan F, Morin G, Charlet L (2007) Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model. Geochem Trans 8:12

    Article  Google Scholar 

  • Busbee MW, Kocar BD, Benner SG (2009) Irrigation produces elevated arsenic in the underlying groundwater of a semi-arid basin in Southwestern Idaho. Appl Geochem 24:843–859

    Article  CAS  Google Scholar 

  • Campbell KM, Malasarn D, Saltikov CW, Newman DK, Hering JG (2005) Effect of sorbed arsenic species on bacterial reduction of HFO. Geochim Cosmochim Acta 69:A357

    Article  Google Scholar 

  • Campbell KM, Malasarn D, Saltikov CW, Newman DK, Hering JG (2006) Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environ Sci Technol 40:5950–5955

    Article  CAS  Google Scholar 

  • Charlet L, Polya DA (2006) Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2:91–96

    Article  Google Scholar 

  • Chatterjee D, Chakraborty S, Nath B, Jana J, Bhattacharyya R, Mallik SB, Charlet L (2003) Mobilization of arsenic in sedimentary aquifer vis-a-vis subsurface iron reduction processes. J Phys IV 107:293–296

    CAS  Google Scholar 

  • Coker VS, Gault AG, Pearce CI, van der Laan G, Telling ND, Charnock JM, Polya DA, Lloyd JR (2006) XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ Sci Technol 40:7745–7750

    Article  CAS  Google Scholar 

  • Datta S, Mailloux B, Jung HB, Hoque MA, Stute M, Ahmed KM, Zheng Y (2009) Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh. Proc Natl Acad Sci USA 106:16930–16935

    Article  CAS  Google Scholar 

  • Dean WE, Piper DZ, Peterson LC (1999) Molybdenum accumulation in Cariaco basin sediment over the past 24 ky: a record of water-column anoxia and climate. Geology 27:507–510

    Article  CAS  Google Scholar 

  • Deng YM, Wang YX, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24:587–599

    Article  CAS  Google Scholar 

  • Detmers J, Bruchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894

    Article  CAS  Google Scholar 

  • Dixit S, Hering JG (2006) Sorption of Fe(II) and As(III) on goethite in single- and dual-sorbate systems. Chem Geol 228:6–15

    Article  CAS  Google Scholar 

  • Dogramaci SS, Herczeg AL, Schiff SL, Bone Y (2001) Controls on delta S-34 and delta O-18 of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Appl Geochem 16:475–488

    Article  CAS  Google Scholar 

  • Dowling CB, Poreda RJ, Basu AR, Peters SL, Aggarwal PK (2002) Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour Res 38:12

    Google Scholar 

  • Eiche E, Neumann T, Berg M, Weinman B, van Geen A, Norra S, Berner Z, Trang PTK, Viet PH, Stuben D (2008) Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Appl Geochem 23:3143–3154

    Article  CAS  Google Scholar 

  • Farquhar J, Canfield DE, Masterson A, Bao H, Johnston D (2008) Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Faellestrand, Denmark. Geochim Cosmochim Acta 72:2805–2821

    Article  CAS  Google Scholar 

  • Fendorf S, Herbel M, Tufano K, Kocar B (2008) Biogeochemical processes controlling the cycling of arsenic in soils and sediments. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, New York

    Google Scholar 

  • Guo XJ, Fujino Y, Kaneko S, Wu KG, Xia YJ, Yoshimura T (2001) Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao Plain area, Inner Mongolia, China. Mol Cell Biochem 222:137–140

    Article  CAS  Google Scholar 

  • Guo HM, Tang XH, Yang SZ, Shen ZL (2008a) Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubations. Appl Geochem 23:3267–3277

    Article  CAS  Google Scholar 

  • Guo HM, Yang SZ, Tang XH, Li Y, Shen ZL (2008b) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci Total Environ 393:131–144

    Article  CAS  Google Scholar 

  • Guo HM, Zhang B, Li Y, Berner Z, Tang XH, Norra S, Stuben D (2011) Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao Basin, Inner Mongolia. Chem Geol 159:876–883

    CAS  Google Scholar 

  • Harris SH, Istok JD, Suflita JM (2006) Changes in organic matter biodegradability influencing sulfate reduction in an aquifer contaminated by landfill leachate. Microbial Ecol 51:535–542

    Article  CAS  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606

    Article  CAS  Google Scholar 

  • Horneman A, Van Geen A, Kent DV, Mathe PE, Zheng Y, Dhar RK, O’Connell S, Hoque MA, Aziz Z, Shamsudduha M, Seddique AA, Ahmed KM (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: evidence from sediment profiles. Geochim Cosmochim Acta 68:3459–3473

    Article  CAS  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  Google Scholar 

  • Islam FS, Pederick RL, Gault AG, Adams LK, Polya DA, Charnock JM, Lloyd JR (2005) Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl Environ Microbiol 71:8642–8648

    Article  CAS  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37:3379–3389

    Article  CAS  Google Scholar 

  • Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulphur isotopes. J Gen Microbiol 34:195–212

    Article  CAS  Google Scholar 

  • Kim PN, Itoi R (2009) Source and release mechanism of arsenic in aquifers of the Mekong delta, Vietnam. J Contam Hydrol 103:58–69

    Article  Google Scholar 

  • Kirk MF, Holm TR, Park J, Jin QS, Sanford RA, Fouke BW, Bethke CM (2004) Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32:953–956

    Article  Google Scholar 

  • Knöller K, Vogt C, Richnow H, Weise S (2006) Sulfur and oxygen isotope fractionation during benzene, toluene, ethyl benzene, and xylene degradation by sulfate-reducing bacteria. Environ Sci Technol 40:3879–3885

    Article  Google Scholar 

  • Li SF, Li HJ (1994) Study on characteristics and the origin of geological environment in endemic arseniasis area, Hetao, Inner Mongolia. Chinese J Geol Hazard Contr 5:213–219 (In Chinese with English abstract)

    Google Scholar 

  • Lin NF, Tang J, Bian JM (2002) Characteristics of environmental geochemistry in the arseniasis area of the Inner Mongolia of China. Environ Geochem Health 24:249–259

    Article  CAS  Google Scholar 

  • Lloyd RM (1967) Oxygen-18 composition of oceanic sulphate. Science 156:1228–1231

    Article  CAS  Google Scholar 

  • Lloyd RM (1968) Oxygen isotope behavior in the sulfate–water system. J Geophys Res 73:6099–6110

    Article  CAS  Google Scholar 

  • Lowers HA, Breit GN, Foster AL, Whitney J, Yount J, Uddin N, Muneem A (2007) Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh. Geochim Cosmochim Acta 71:2699–2717

    Article  CAS  Google Scholar 

  • Mangalo M, Meckenstock RU, Stichler W, Einsiedl F (2007) Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim Cosmochim Acta 71:4161–4171

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    Article  CAS  Google Scholar 

  • Mizutani Y, Rafter RA (1969) Oxygen isotopic composition of sulphates: part 4. Bacterial fractionation of oxygen isotopes in the reduction of sulphate and in the oxidation of sulphur. New Zeal J Sci 12:60–67

    CAS  Google Scholar 

  • Mizutani Y, Rafter RA (1973) Isotopic behavior of sulphate oxygen in the bacterial reduction of sulphate. Geochem J 6:183–191

    Article  CAS  Google Scholar 

  • Nakai N, Jensen ML (1964) The kinetic isotope effect in bacterial reduction and oxidation of sulfur. Geochim Cosmochim Acta 28:1893–1912

    Article  CAS  Google Scholar 

  • Neumann RB, Polizzotto ML, Badruzzaman ABM, Ali MA, Zhang ZY, Harvey CF (2009) Hydrology of a groundwater-irrigated rice field in Bangladesh: seasonal and daily mechanisms of infiltration. Water Resour Res 45:W09412. doi:10.1029/2008WR007542

    Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  CAS  Google Scholar 

  • Nielsen PH (1991) Sulfur sources for hydrogen-sulfide production in biofilms from sewer systems. Water Sci Technol 23:1265–1274

    CAS  Google Scholar 

  • Nordstrom DK (2002) Public health—Worldwide occurrences of arsenic in ground water. Science 296(5576):2143–2145

    Article  CAS  Google Scholar 

  • Nordstrom DK, Archer DG (2003) Arsenic thermodynamic data and environmental geochemistry. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Otero N, Soler A, Canals A (2008) Controls of delta S-34 and delta O-18 in dissolved sulphate: learning from a detailed survey in the Llobregat River (Spain). Appl Geochem 23:1166–1185

    Article  CAS  Google Scholar 

  • Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454:505–508

    Article  CAS  Google Scholar 

  • Postma D, Larsen F, MinhHue NT, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071

    Article  CAS  Google Scholar 

  • Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349

    Article  CAS  Google Scholar 

  • Roman-Ross G, Charlet L, Tisserand D, Glemme M (2005) Redox processes in a eutrophic coal-mine lake. Mineral Mag 69:797–805

    Article  CAS  Google Scholar 

  • Schreiber ME, Gotkowitz MB, Simo JA, Freiberg PG (2003) Mechanism of arsenic release to groundwater from naturally occurring sources, eastern Wisconsin. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  CAS  Google Scholar 

  • Smedley PL, Knudsen J, Maiga D (2007) Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Appl Geochem 22:1074–1092

    Article  CAS  Google Scholar 

  • Strebel O, Böttcher J, Fritz P (1990) Use of isotope fractionation of sulfate–sulfur and sulfate–oxygen to assess bacterial desulfurication in a sandy aquifer. J Hydrol 121:155–172

    Article  CAS  Google Scholar 

  • Stuben D, Berner Z, Chandrasekharam D, Karmakar J (2003) Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of as under reducing conditions. Appl Geochem 18:1417–1434

    Article  CAS  Google Scholar 

  • Sun TZ (1994) Investigation on arsenic level and poisoning in endemic arsenism areas in Inner Mongolia. J Ctrl Endem Dis 9:38–41 (In Chinese with English abstract)

    Google Scholar 

  • Taylor BE, Wheeler MC, Nordstrom DK (1984) Isotope composition of sulfate in acid-mine drainage as measure of bacterial oxidation. Nature 308:538–541

    Article  CAS  Google Scholar 

  • Tufano KJ, Reyes C, Saltikov CW, Fendorf S (2008) Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ Sci Technol 42:8283–8289

    Article  CAS  Google Scholar 

  • Tuttle MLW, Breit GN, Cozzarelli IM (2009) Processes affecting delta S-34 and delta O-18 values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA. Chem Geol 265:455–467

    Article  CAS  Google Scholar 

  • Ulrich GA, Breit GN, Cozzarelli IM, Suflita JM (2003) Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer. Environ Sci Technol 37:1093–1099

    Article  CAS  Google Scholar 

  • van Geen A, Ahsan H, Horneman AH, Dhar RK, Zheng Y, Hussain I, Ahmed KM, Gelman A, Stute M, Simpson HJ, Wallace S, Small C, Parvez F, Slavkovich V, Lolacono NJ, Becker M, Cheng Z, Momotaj H, Shahnewaz M, Seddique AA, Graziano JH (2002) Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bull World Health Org 80:732–737

    Google Scholar 

  • Van Stempvoort DR, Krouse HR (1994) Controls of δ18 O in sulfate: review of experimental data and application to specific environments. In: Alpers CN, Blowes DW (eds), Environmental geochemistry of sulfide oxidation. ACS symposium series, vol. 500. American Chemical Society, Washington, p 446–480

  • Vitöria L, Otero N, Soler A, Canals A (2004) Fertiliser characterisation: isotopic data (N, S, O, C, and Sr). Environ Sci Technol 38:3254–3262

    Article  Google Scholar 

  • Wang XJ, Chen XP, Kappler A, Sun GX, Zhu YG (2009a) Arsenic binding to iron(ii) minerals produced by an iron(iii)-reducing aeromonas strain isolated from paddy soil. Environ Toxicol Chem 28:2255–2262

    Article  CAS  Google Scholar 

  • Wang YX, Shvartsev SL, Su CL (2009b) Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Appl Geochem 24(4):641–649

    Article  CAS  Google Scholar 

  • Warren JK (2010) Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci Rev 98(3–4):217–268

    Article  CAS  Google Scholar 

  • Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324:370–373

    Article  CAS  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water 38:589–604

    Article  CAS  Google Scholar 

  • Wolthers M, Charlet L, van der Weijden CH (2003) Arsenic sorption onto disordered mackinawite as a control on the mobility of arsenic in the ambient sulphidic environment. J Phys IV 107:1377–1380

    CAS  Google Scholar 

  • Wortmann UG, Chernyavsky B, Bernasconi SM, Brunner B, Bottcher ME, Swart PK (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim Cosmochim Acta 71:4221–4232

    Article  CAS  Google Scholar 

  • Xie XJ, Ellis A, Wang YX, Xie ZM, Duan MY, Su CL (2009) Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong basin, China. Sci Total Environ 407:3823–3835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was financially supported by National Natural Science Foundation of China (Nos. 40830748 and 40902071), and Ministry of Education of China (111 project).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. X. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M.D., Wang, Y.X., Li, P. et al. δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China. Ecotoxicology 23, 1958–1968 (2014). https://doi.org/10.1007/s10646-014-1310-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1310-y

Keywords

Navigation