Skip to main content

Advertisement

Log in

Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The interactions and relevance of the soil (total and available) concentrations, accumulation, and acute toxicity of several essential and non-essential trace elements were investigated to determine their importance in environmental soil assessment. Three plant species (T. aestivum, R. sativum, and V. sativa) and E. fetida were simultaneously exposed for 21 days to long-term contaminated soils collected from the surroundings of an abandoned pyrite mine. The soils presented different levels of As and metals, mainly Zn and Cu, and were tested at different soil concentrations [12.5, 25, 50, and 100 % of contaminated soil/soil (w/w)] to increase the range of total and available soil concentrations necessary for the study. The total concentrations in the soils (of both As and metals) were better predictors of earthworm uptake than were the available concentrations. In plants, the accumulation of metals was related to the available concentrations of Zn and Cu, which could indicate that plants and earthworms accumulate elements from different pools of soil contaminants. Moreover, Zn and Cu, which are essential elements, showed controlled uptake at low concentrations. The external metal concentrations predicted earthworm mortality, whereas in plants, the effects on growth were correlated to the As and metal contents in the plants. In general, the bioaccumulation factors were lower at higher exposure levels, which implies the existence of auto-regulation in the uptake of both essential and non-essential elements by plants and earthworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risk of metals, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Alvarenga P, Laneiro C, Palma P, de Varennes A, Cunha-Queda C (2013) A study on As, Cu, Pb and Zn (bio)availability in an abandoned mine area (Sao Domingos, Portugal) using chemical and ecotoxicological tools. Environ Sci Pollut Res 20:6539–6550

    Article  CAS  Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Murciego A, Buyolo T (2006) Exposure and bioavailability of arsenic in contaminated soils from the La Parrilla mine, Spain. Environ Geol 50:170–179

    Article  CAS  Google Scholar 

  • Bade R, Oh S, Shin WS (2012) Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations. Sci Total Environ 416:127–136

    Article  CAS  Google Scholar 

  • Berthelot Y, Valton E, Auroy A, Trottier B, Robidoux PY (2008) Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils. Chemosphere 74:166–177

    Article  CAS  Google Scholar 

  • Esteban E, Carpena RO, Meharg AA (2003) High affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173

    Article  CAS  Google Scholar 

  • Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227

    Article  CAS  Google Scholar 

  • García-Gómez C, Sánchez-Pardo B, Esteban E, Peñalosa JM, Fernández MD (2014) Risk assessment of an abandoned pyrite mine in Spain based on direct toxicity assays. Sci Total Environ 470–471:390–399

    Article  Google Scholar 

  • Garcia-Salgado S, Garcia-Casillas D, Quijano-Nieto MA, Bonilla-Simon MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572

    Article  CAS  Google Scholar 

  • Geiszinger A, Goessler W, Kuehnelt D, Francesconi K, Kosmus W (1998) Determination of arsenic compounds in earthworms. Environ Sci Technol 32:2238–2243

    Article  CAS  Google Scholar 

  • Geng CN, Zhu YG, Tong YP, Smith SE, Smith FA (2006) Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). Chemosphere 62:608–615

    Article  CAS  Google Scholar 

  • Janssen RPT, Posthuma L, Baerselman R, DenHollander HA, van Veen RPM, Peijnenburg JGM (1997) Equilibrium partitioning of heavy metals in Dutch field soils. Prediction of metal accumulation in earthworms. Environ Toxicol Chem 16:2479–2488

    Article  CAS  Google Scholar 

  • Langdon CJ, Piearce TG, Meharg AA, Semple KT (2003) Interactions between earthworms and arsenic in the soil environment: a review. Environ Pollut 124:361–373

    Article  CAS  Google Scholar 

  • Lee SW, Lee BT, Kim JY, Kim KW, Lee JS (2006) Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environ Monit Assess 119:233–244

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  Google Scholar 

  • Lock K, Janssen CR (2001) Zinc and cadmium body burdens in terrestrial oligochaetes: use and significance in environmental risk assessment. Environ Toxicol Chem 20:2067–2072

    Article  CAS  Google Scholar 

  • Lozano-Rodríguez E, Luguera M, Lucena JJ, Carpena-Ruiz RO (1995) Evaluation of two different acid digestion methods in closed systems of trace elements determination in plants. Quim Anal 14:27–30

  • Ma WC (2004) Estimating heavy metal accumulation in oligochaete earthworms: a meta-analysis of field data. Bull Environ Contam Toxicol 72:663–670

    CAS  Google Scholar 

  • MAPA (Ministerio de Agricultura, Pesca y Alimentación) (1994) Métodos Oficiales de Análisis, vol III. Madrid

  • Marabottini R, Stazi SR, Papp R, Grego S, Moscatelli MC (2013) Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicol Environ Saf 96:147–153

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31:1661–1700

    CAS  Google Scholar 

  • Moreno-Jimenez E, Garcia-Gomez C, Lourdes Oropesa A, Esteban E, Haro A, Carpena-Ruiz R, Tarazona JV, Peñalosa JM (2011) Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain. Sci Total Environ 409:692–703

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Manzano R, Esteban E, Peñalosa JM (2010) The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J Soil Sediment 10:301–312

    Article  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37

    Google Scholar 

  • Mourier B, Fritsch C, Dhivert E, Gimbert F, Coeurdassier M, Pauget B, Vaufleury A, Scheifler R (2011) Chemical extractions and predicted free ion activities fail to estimate metal transfer from soil to field land snails. Chemosphere 85:1057–1065

    Article  CAS  Google Scholar 

  • Nannoni F, Protano G, Riccobono F (2011) Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo. Soil Biol Biochem 43:2359–2367

    Article  CAS  Google Scholar 

  • Neuhauser EF, Cukic ZV, Malecki MR, Loehr RC, Durkin PR (1995) Bioconcentration and biokinetics of heavy-metals in the earthworm. Environ Pollut 89:293–301

    Article  CAS  Google Scholar 

  • Pauget B, Gimbert F, Scheifler R, Coeurdassier M, de Vaufleury A (2012) Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data. Sci Total Environ 431:413–425

    Article  CAS  Google Scholar 

  • Peijnenburg W, Baerselman R, de Groot AC, Jager T, Posthuma L, Van Veen RPM (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicol Environ Saf 44:294–310

    Article  CAS  Google Scholar 

  • Penttinen S, Malk V, Väisänen A, Penttinen OP (2011) Using the critical body residue approach to determine the acute toxicity of cadmium at varying levels of water hardness and dissolved organic carbon concentrations. Ecotoxicol Environ Saf 74:1151–1155

    Article  CAS  Google Scholar 

  • Pignattelli S, Colzi I, Buccianti A, Cecchi L, Arnetoli M, Monnanni R, Gabbrielli R, Gonnelli C (2012) Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil. J Hazard Mater 227:362–369

    Article  Google Scholar 

  • Scott-Fordsmand JJ, Stevens D, McLaughlin M (2004) Do earthworms mobilize fixed zinc from ingested soil? Environ Sci Technol 38:3036–3039

    Article  CAS  Google Scholar 

  • Semenzin E, Critto A, Carlon C, Rutgers M, Marcomini A (2007) Development of a site-specific ecological risk assessment for contaminated sites: part II. A multi-criteria based system for the selection of bioavailability assessment tools. Sci Total Environ 379:34–45

    Article  CAS  Google Scholar 

  • Smith PG, Koch I, Reimer KJ (2008) Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Sci Total Environ 390:188–197

    Article  CAS  Google Scholar 

  • Smith BA, Egeler P, Gilberg D, Hendershot W, Stephenson GL (2010) Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil. Arch Environ Contamin Toxicol 59:264–273

    Article  CAS  Google Scholar 

  • Smith BA, Greenberg B, Stephenson GL (2012) Bioavailability of copper and zinc in mining soils. Arch Environ Contamin Toxicol 62:1–12

    Article  CAS  Google Scholar 

  • Vaj C, Barmaz S, Sørensen PB, Spurgeon D, Vighi M (2011) Assessing, mapping and validating site-specific ecotoxicological risk for pesticide mixtures: a case study for small scale hot spots in aquatic and terrestrial environments. Ecotoxicol Environ Saf 74:2156–2166

    Article  CAS  Google Scholar 

  • Van Gestel CAM, Henzen L, Dirven-Van Breemen EM, Kamerman JW (2002) Influence of soil remediation techniques on the bioavailability of heavy metals. In: Sunahara GI, Renoux AY, Thellen C, Gaudet CL, Pilon A (eds) Environmental analysis of contaminated sites. Wiley, New York, pp 361–388

    Google Scholar 

  • Van Straalen NM, Van Gestel CAM (1993) Soil invertebrates and micro-organisms. In: Calow P (ed) Handbook of ecotoxicology, vol 1, 1st edn. Blackwell Scientific Publications, Oxford, pp 251–277

    Google Scholar 

  • Vázquez S, Moreno E, Carpena RO (2008) Bioavailability of metals and As from acidified multi-contaminated soils: validation of several extraction methods by lupin plants. Environ Geochem Health 30:193–198

  • Vijver MG, Vink JPM, Miermans CJH, van Gestel CAM (2003) Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35:125–132

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

Download references

Acknowledgments

The authors are grateful to Carmen del Rio and José Luis Pareja for their technical assistance. This work was financed by the Community of Madrid through the EIADES Project (S-2009/AMB/1478) and by the Spanish Ministry of Education and Science project CTM2010-21922-C02-02. The authors also thank the Excmo. Ayuntamiento de Bustarviejo for admittance to the mine. The authors declare no competing financial interest.

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Dolores Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gómez, C., Esteban, E., Sánchez-Pardo, B. et al. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations. Ecotoxicology 23, 1195–1209 (2014). https://doi.org/10.1007/s10646-014-1262-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1262-2

Keywords

Navigation