Ecotoxicology

, Volume 23, Issue 6, pp 1099–1108 | Cite as

Oxidative stress in the mollusk Echinolittorina peruviana (Gasteropoda: Littorinidae, Lamarck, 1822) and trace metals in coastal sectors with mining activity

Article

Abstract

The aim of the study was to evaluate the effect of coastal waters of sites with mining activity in Echinolittorina peruviana, through oxidative stress biomarkers and heavy metals determination both in water and in tissue. Organisms were collected in the intertidal zone in areas with and without mining activity. Metal concentrations in the water and tissues, and also, the following biomarkers of oxidative stress: antioxidant enzyme activity, superoxide dismutase and catalase, non-enzymatic oxidative capacity (TRAP), oxidative damage to proteins (carbonyls) and TBARS, were measured The concentrations of accumulated metals had the following order Fe > Cu > Cd > Zn > Cr > Mo > As; the highest concentrations of metals in water and tissues were found in Caleta Palito and Chañaral. Results suggest that the coastal waters with mining activity and greatest concentrations of copper and iron induced the greater antioxidant response and oxidative damage to lipids in E. peruviana.

Keywords

Biomonitor Metals ROS Biomarkers of oxidative stress 

Notes

Acknowledgment

This work was supported by the Project No. 28/2009 of the Dirección de Investigación of the Universidad de Valparaíso.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126CrossRefGoogle Scholar
  2. Almeida E, Bainy A, Medeiros M, Mascio P (2003) Effects of trace metal and exposure to air on serotonin and dopamine levels in tissues of the mussel Perna perna. Mar Pollut Bull 46:1485–1490CrossRefGoogle Scholar
  3. Baqueiro-Cárdenas E, Borabe L, Goldaracena-Islas C, Rodríguez-Navarro J (2007) Mollusks and pollution. A review. Rev Mex Biodivers 78:1S–7SGoogle Scholar
  4. Baumann H, Morrison L, Stengel D (2009) Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Saf 72:1063–1075CrossRefGoogle Scholar
  5. Boese B, Lee H (1992) Synthesis of methods to predict bioaccumulation of sediment pollutants. Environmental Protection Agency. Environmental Research Laboratory. Narragansett RI. ERL-N No. N232. U.SGoogle Scholar
  6. Box A, Sureda A, Galgani F, Pons A, Deudero S (2007) Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp Biochem Physiol 146(C):531–539Google Scholar
  7. Carvalho-Neta R, Abreu-Silva A (2010) Sciades herzbergii oxidative stress biomarkers: an in situ study of an estuarine ecosystem (São Marcos’ Bay, Maranhão, Brazil). Braz J Oceanogr 58:11–17CrossRefGoogle Scholar
  8. Castillo V, Brown D (2008) Microscopic anatomy of the male reproductive system in Echinolittorina peruviana (Mollusca: Caenogastropoda). Int J Morphol 26(2):423–432CrossRefGoogle Scholar
  9. Cataldo J, Hidalgo M, Neaman A, Gaete H (2011) Use of molecular biomarkers in Eisenia foetida to assess copper toxicity in agricultural soils affected by mining activities. J Soil Sci Plant Nutr 11(3):57–70Google Scholar
  10. Comín F, Menéndez M, Romero J, Hernández O, Martínez M, Chacón A (1999) Indicadores ecológicos y herramientas para la gestión de ecosistemas acuáticos en la zona costera. Limnetica 16:61–68Google Scholar
  11. Conti M, Stripeikis J, Iacobucci M, Cucina D, Cecchetti G, Tudino M (2006) Trace metals in molluscs from the Beagle Channel (Argentina): a preliminary study. WIT Trans Ecol Environ 99:473–483CrossRefGoogle Scholar
  12. Conti M, Stripeikis J, Finoia M, Tudino M (2012) Baseline trace metals in gastropod mollusks from the Beagle Channel, Tierra del Fuego (Patagonia, Argentina). Ecotoxicology 21:1112–1125CrossRefGoogle Scholar
  13. Contreras L, Dennett G, González A, Vergara E, Medina C, Correa J, Moenne A (2011) Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Mar Biotechnol 13:544–556CrossRefGoogle Scholar
  14. Dahms H, Dobretsov S, Lee J (2011) Effects of UV radiation on marine ectotherms in polar regions. Comp Biochem Physiol 153(C):363–371Google Scholar
  15. Damásio J, Navarro-Ortega A, Tauler R, Lacorte S, Barceló D, Soares A, López M, Riva M, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology 19:1084–1094CrossRefGoogle Scholar
  16. Duffus J (2002) Heavy metals—a meaningless term. Pure Appl Chem 74:763CrossRefGoogle Scholar
  17. El-Gendy K, Radwan M, Gad A (2009) In vivo evaluation of oxidative stress biomarkers in the land snail, Theba pisana exposed to copper-based pesticides. Chemosphere 77:339–344CrossRefGoogle Scholar
  18. Esterbauer K, Cheeseman H, Dianzani M, Poli G, Slater T (1982) Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J 208(1):129–140Google Scholar
  19. Fang T, Hwang J, Hsiao S (2006) Trace metals in seawater and copepods in the ocean outfall area off northern Taiwan coast. Mar Environ Res 61:224CrossRefGoogle Scholar
  20. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112CrossRefGoogle Scholar
  21. Funes V, Alhama J, Navas J, López-Barea J, Peinado J (2006) Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ Pollut 139:214–223CrossRefGoogle Scholar
  22. Gaete H, Hidalgo M, Neaman A, Ávila G (2010) Evaluación de la toxicidad de cobre en suelos a través de biomarcadores de estrés oxidativo en Eisenia foetida. Quim Nova 33(3):566–570CrossRefGoogle Scholar
  23. Guzmán N, Saá S, Ortlieb L (1998) Catálogo descriptivo de los moluscos litorales (gastropoda y pelecypoda) de la zona de Antofagasta, 23°s (Chile). Estud Oceanol 17:17–86Google Scholar
  24. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322CrossRefGoogle Scholar
  25. Halliwell B, Gutteridge J (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14Google Scholar
  26. Halliwell B, Gutteridge J (1989) Free radical in biology and medicine. Clarendon, Oxford, pp 1–142Google Scholar
  27. Halliwell B, Gutteridge J (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280:1–8CrossRefGoogle Scholar
  28. Halliwell B, Gutteridge J (2006) Free radicals in biology and medicine, 4th edn. Clarendon Press, OxfordGoogle Scholar
  29. Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley, New York, pp 319–368Google Scholar
  30. Hidalgo M, Fernández E, Cabello A, Rivas C, Fontecilla F, Morales L, Aguirre A, Cabrera E (2006) Evaluation of the antioxidant response of Chiton granosus Frembly, 1928 (Mollusca: Polyplacophora) to oxidative pollutants. Rev Biol Mar Oceanogr 41(2):155–165CrossRefGoogle Scholar
  31. Jakimska A, Konieczka P, Skóra K, Namieśnik J (2011) Bioaccumulation of metals in tissues of marine animals, Part II: metal concentrations in animal tissues. Pol J Environ Stud 20(5):1127–1146Google Scholar
  32. Je J, Belan T, Levings C, Koo B (2004) Changes in benthic communities along a presumed pollution gradient in vancouver harbour. Mar Environ Res 57:121–135.Google Scholar
  33. Knigge T, Mann N, Parveen Z, Perry C, Gernhofer M, Triebskorn R, Kohler H, Connock M (2002) Mannosomes: a molluscan intracellular tubular membrane system related to heavy metal stress? Comp Biochem Physiol 131(1):259–269Google Scholar
  34. Lane N (2002) Oxygen, the molecule that made the world. Oxford University Press, OxfordGoogle Scholar
  35. Lee M, Correa J (2005) Effects of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile. Mar Environ Res 59:1–18CrossRefGoogle Scholar
  36. Lee M, Correa J, Zhang H (2002) Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into the coastal waters of the Atacama region of northern Chile. Mar Pollut Bull 44:956–976CrossRefGoogle Scholar
  37. Lewis A (1990) The biological importance of copper. A literature review. Final report INC Aproject NoGoogle Scholar
  38. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275Google Scholar
  39. Lushchak V, Bagnyukova T (2006) Temperature increase results in oxidative stress in gold fish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol 143(c):36–41Google Scholar
  40. Morriconi E (1999) Reproductive biology of the limpet Nacella (P.) deaurata (Gmelin, 1791) in Bahia Lapataia (Beagle Channel). Sci Mar 63:417–426CrossRefGoogle Scholar
  41. Nicotri M (1977) Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58:1020–1032CrossRefGoogle Scholar
  42. Nowakowska A, Swiderska-Kolacz G, Rogalska J, Caputa M (2009) Antioxidants and oxidative stress in Helix pomatia snails during estivation. Comp Biochem Physiol 150(1):481–486Google Scholar
  43. Palamanda J, Kehrer J (1992) Inhibition of protein carbonyl formation and lipid peroxidation by glutathione in rat liver microsomes. Arch Biochem Biophys 293:103–109CrossRefGoogle Scholar
  44. Pan L, Ren J, Zheng D (2009) Effects of benzo(α)pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri. Chin J Ooceanol Lim 27(1):43–53CrossRefGoogle Scholar
  45. Radwan M, El-Gendy K, Gad A (2010) Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemosphere 79:40–46CrossRefGoogle Scholar
  46. Rodríguez J, Menéndez J, Trujillo Y (2001) Radicales libres en la biomedicina y estrés oxidativo. Rev Cuba Med Mil 30(1):36–44Google Scholar
  47. Rojas J, Fariña J, Soto R, Bozinovic F (2000) Geographic variability in thermal tolerance and water economy of the intertidal gastropod Nodilittorina peruviana. (Gastropoda: Littorinidae, Lamarck, 1822). Rev Chil Hist Nat 73:543–552CrossRefGoogle Scholar
  48. Romay C, Pascual C, Lissi E (1996) The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz J Med Biol 29:175–183Google Scholar
  49. Sáez C, Lobos G, Macaya E, Oliva D, Quiroz W, Brown MT (2012) Variation in patterns of metal accumulation in thallus parts of Lessonia trabeculata (Laminariales; Phaeophyceae): implications for biomonitoring. PLoS ONE 7(11):1–10CrossRefGoogle Scholar
  50. Verlecar X, Jena K, Chainy G (2008) Seasonal variation of oxidative biomarkers in gills and digestive gland of green-lipped mussel Perna viridis from Arabian Sea. Estuar Coast Shelf Sci 76:745–752CrossRefGoogle Scholar
  51. Viarengo A, Burlando B, Giordana A, Bolognesi C, Gabrielides GP (2000) Networking and expert system analysis: next frontier in biomonitoring. Mar Environ Res 49:483–486CrossRefGoogle Scholar
  52. Wang C, Zhao Y, Zheng R (2006) Effects of tributyltin, benzo[a]pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Ecotoxicol Environ Saf 65(3):381–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratorio de Investigación—Estrés Oxidativo, Facultad de MedicinaUniversidad de ValparaísoValparaísoChile
  2. 2.Facultad de Ciencias, Instituto de Ciencias AmbientalesUniversidad de ValparaísoPlaya Ancha, ValparaísoChile
  3. 3.Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Universidad de ValparaísoPlaya Ancha, ValparaísoChile
  4. 4.Facultad de Ciencias, Instituto de Química y BioquímicaUniversidad de ValparaísoPlaya Ancha, ValparaísoChile

Personalised recommendations