Skip to main content

Advertisement

Log in

Toxicity of differently sized and coated silver nanoparticles to the bacterium Pseudomonas putida: risks for the aquatic environment?

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Aim of this study was to describe the toxicity of a set of different commercially available silver nanoparticles (AgNPs) to the gram-negative bacterium Pseudomonas putida (growth inhibition assay, ISO 10712) in order to contribute to their environmental hazard and risk assessment. Different AgNP sizes and coatings were selected in order to analyze whether those characteristics are determinants of nanoparticle toxicity. Silver nitrate was tested for comparison. In general Pseudomonas putida reacted very sensitive towards the exposure to silver, with an EC05 value of 0.043 μg L−1 for AgNO3 and between 0.13 and 3.41 μg L−1 for the different AgNPs (EC50 values 0.16 μg L−1 for AgNO3, resp. between 0.25 and 13.4 μg L−1 for AgNPs). As the ionic form of silver is clearly the most toxic, an environmental hazard assessment for microorganisms based on total silver concentration and the assumption that AgNPs dissolve is sufficiently protective. Neither specific coatings nor certain sizes could be linked to increasing or decreasing toxicity. The characterization of particle behavior as well as the total and dissolved silver content in the medium during the exposures was not possible due to the high sensitivity of Pseudomonas (test concentrations were below detection limits), indicating the need for further development in the analytical domain. Monitored silver concentrations in the aquatic environment span six orders of magnitude (0.1–120,000 ng L−1), which falls into the span of observed EC05 values and might hence indicate a risk to environmental bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:264–269

    Article  Google Scholar 

  • Ahmed G, Miah MA, Anawar HM, Chowdhury DA, Ahmad JU (2012) Influence of multi-industrial activities on trace metal contamination: an approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ). Environ Monit Assess 184(7):4181–4190

    Article  CAS  Google Scholar 

  • Aranout CL, Gunsch CK (2012) Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environ Sci Technol 46(10):5387–5395

    Article  Google Scholar 

  • Carr B, Wright M (2013) Nanoparticle tracking analysis—a review of applications and usage 2010–2012. NanoSight

  • D’Britto V, Kapse H, Babrekar H, Pabhune AA, Bhoraskar SV, Premnath V, Prasad BLV (2011) Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive. Nanoscale 3(7):2957–2963

    Article  Google Scholar 

  • Fabrega J, Renshaw JC, Ead JR (2009) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43:9004–9009

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Fries R, Gressler S, Simko M, Gazso A, Fiedeler U, Nentwich M (2010) Nanosilver. Nanotrust Dossiers 10:1–6

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modelling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29(5):1036–1048

    CAS  Google Scholar 

  • Hund-Rinke KC, Schlich A, Wenzel A (2011) TiO2 nanoparticles—relationship between dispersion preparation method and ecotoxicity in the algal growth test. Umweltwiss Schadst Forsch 22:517–528

    Article  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  Google Scholar 

  • ISO Guideline 10712 (1995) Water quality—Pseudomonas putida growth inhibition test

  • Lok C, Ho C, Chen R, He Q, Yu W, Sun H (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Van Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31(1):115–121

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Environmental impacts of nanosilver. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Nowack B (2010) Nanosilver revisited downstream. Science 330:1054–1055

    Article  CAS  Google Scholar 

  • Nowack B, Krug H, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  CAS  Google Scholar 

  • Ortega-Calvo JJ, Molina R, Jimenez-Sanchez C, Dobson PJ, Thompson IP (2011) Bacterial tactic responses to silver nanoparticles. Environ Microb Rep 3(5):526–534

    Article  CAS  Google Scholar 

  • Pal S, Tak KY, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microb 73:1712–1720

    Article  CAS  Google Scholar 

  • Radniecki TS, Stankus DP, Neigh A, Nason JA, Semprini L (2011) Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 85(1):43–49

    Article  CAS  Google Scholar 

  • Roditi HA, Fisher NS, Sañudo-Wilhelmy SA (2000) Field testing a metal bioaccumulation model for zebra mussels. Environ Sci Technol 34(13):2817–2825

    Article  CAS  Google Scholar 

  • Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S, Ardalan S (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23(1):22–29

    Article  CAS  Google Scholar 

  • Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best fit method for concentration-response curves and the estimation of low-effect concentrations. Environ Toxicol Chem 20:448–457

    Article  CAS  Google Scholar 

  • Sheng Z, Yang L (2011) Effects of silver nanoparticles on waste water biofilms. Water Res 45:6039–6050

    Article  CAS  Google Scholar 

  • Teodorovic I, Planojevic I, Knezevic P, Radak S, Nemet I (2009) Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Cent Eur J Biol 4(4):482–492

    Article  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  Google Scholar 

  • Zounková R, Odráska P, Dolezalová L, Hilscherová K, Marsálek B, Zounkov B (2007) Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem 26(10):2208–2214

    Article  Google Scholar 

  • nanoComposix Inc. (2013) http://www.nanocomposix.com. December 2013

  • http://www.nanotechproject.org. June 2012

Download references

Acknowledgments

The authors thank the following people for their support and helpful discussions: Åsa Arrhenius (University of Gothenburg) for support with the experiments, Mark Ware (NanoSight) for help with recording the NTA videos, Jurgen Arning and Juliane Filser (University of Bremen) for supplying the NM-300 K and PL-Ag-S10 particles in the context of the UMSICHT R&D Project (Federal Ministry of Education and Research, Germany, 03X0091).

Funding

The study was financially supported by the Swedish Research Council (Projects NanoRisk and NanoSphere) and the European Commission (FP7 Project NanoFATE, NMP4-SL-2010-24773).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Matzke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzke, M., Jurkschat, K. & Backhaus, T. Toxicity of differently sized and coated silver nanoparticles to the bacterium Pseudomonas putida: risks for the aquatic environment?. Ecotoxicology 23, 818–829 (2014). https://doi.org/10.1007/s10646-014-1222-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1222-x

Keywords