Skip to main content

The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes

Abstract

Silver nanoparticles (AgNPs) are widely believed to be retained in the sewage sludge during sewage treatment. The AgNPs and their derivatives, however, re-enter the environment with the sludge and via the effluent. AgNP were shown to occur in surface water, while evidence of a potential toxicity of AgNPs in aquatic organisms is growing. This study aims to examine the toxicity of AgNPs to the embryos of the aquatic vertebrate model zebrafish (Danio rerio) before and after sewage treatment plants (STPs) processes. Embryos were treated with AgNP (particle size: >90 % <20 nm) and AgNO3 in ISO water for 48 h and consequently displayed effects such as delayed development, tail malformations and edema. For AgNP, the embryos were smaller than the controls with conspicuously smaller yolk sacs. The corresponding EC50 values of 48 hours post fertilization (hpf) were determined as 73 μg/l for AgNO3 and 1.1 mg/l for AgNP. Whole-mount immunostainings of primary and secondary motor neurons also revealed secondary neurotoxic effects. A TEM analysis confirmed uptake of the AgNPs, and the distribution within the embryo suggested absorption across the skin. Embryos were also exposed (for 48 h) to effluents of AgNP-spiked model STP with AgNP influent concentrations of 4 and 16 mg/l. These embryos exhibited the same malformations than for AgNO3 and AgNPs, but the embryo toxicity of the sewage treatment effluent was higher (EC50 = 142 μg/l; 48 hpf). On the other hand, control STP effluent spiked with AgNPs afterwards was less toxic (EC50 = 2.9 mg/l; 48 hpf) than AgNPs in ISO water. This observation of an increased fish embryo toxicity of STP effluents with increasing AgNP influent concentrations identifies the accumulation of AgNP in the STP as a potential source of effluent toxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Asharani PV et al (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102

    Article  CAS  Google Scholar 

  • Baker C et al (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    Article  CAS  Google Scholar 

  • Bar-Ilan O et al (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Bilberg K et al (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:293784

    Google Scholar 

  • Blaser SA et al (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Braunbeck T, Lammer E (2006) Background document on fish embryo toxicity assays. UBA 203 85 422. German Federal Environmental Protection Agency, Dessau

    Google Scholar 

  • Burkhardt M et al (2010) Verhalten von Nanosilber in Kläranlagen und dessen Einfluss auf die Nitrifikationsleistung in Belebtschlamm. Umweltwiss Schadst Forsch 22:529–540

    Article  CAS  Google Scholar 

  • Carrel TL et al (2006) Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis. J Neurosci 26:11014–11022

    Article  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  • Choi O et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Choi O et al (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

    Article  CAS  Google Scholar 

  • Danscher G (1991) Histochemical tracing of zinc, mercury, silver and gold. Prog Histochem Cytochem 23:273–285

    Article  CAS  Google Scholar 

  • Danscher G, Montagnese C (1994) How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol Appl Neurobiol 20:454–467

    Article  CAS  Google Scholar 

  • El Badawy AM et al (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  Google Scholar 

  • Erickson R et al (1998) Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environ Toxicol Chem 17:572–578

    Article  CAS  Google Scholar 

  • Fabrega J et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Geranio L et al (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  • Grier N (1983) Silver and its compounds. In: Block S (ed) Disinfection, sterilization and preservation. Lea & Febiger, Philadelphia

    Google Scholar 

  • Hogstrand C, Wood C (1998) Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–561

    Article  CAS  Google Scholar 

  • ISO 11885 (2007) Water quality—determination of selected elements by inductively coupled plasma-optical emission spectrometry (ICP-OES)

  • Johnston HJ et al (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  CAS  Google Scholar 

  • Jovanović B et al (2011) Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes. Ecotoxicol Environ Saf 74:1518–1525

    Article  Google Scholar 

  • Kaegi R et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908

    Article  CAS  Google Scholar 

  • Kaegi R et al (2013) Fate and Transformation of Silver Nanoparticles in Urban Wastewater Systems. Water Res 47:3866–3877

    Google Scholar 

  • Kim B et al (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44: 7509-7514

    Article  CAS  Google Scholar 

  • Klawonn T et al (2012) Total dissolution and digestion methods for engineered metal nanoparticles. Mitt Umweltchem Ökotox 18:32–34

    Google Scholar 

  • Klein C et al (2011) NM-300 silver characterisation, stability, homogeneity. EUR—Scientific and Technical Research Reports, JRC Publication No. JRC60709, EUR 24693 EN, Publications Office of the European Union. doi:10.2788/23079

  • Küster E, Altenburger R (2008) Oxygen decline in biotesting of environmental samples—is there a need for consideration in the acute zebrafish embryo assay? Environ Toxicol 23:745–750

    Article  Google Scholar 

  • Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120–121:59–66

    Article  Google Scholar 

  • Laban G et al (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195

    Article  CAS  Google Scholar 

  • Lee KJ et al (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  CAS  Google Scholar 

  • Levard C et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  • Lowry GV et al (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  • Muth-Köhne E et al (2012) The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity. Neurotoxicol Teratol 34(4):413–424

    Article  Google Scholar 

  • Niño-Martínez N et al (2008) Characterization of silver nanoparticles synthesized on titanium dioxide fine particles. Nanotechnology 19:065711

    Article  Google Scholar 

  • Nowack B et al (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    Article  CAS  Google Scholar 

  • Oberdörster G et al (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • OECD (1992) Test Guideline 203. OECD Test Guideline 203: fish, acute toxicity test

  • OECD (2001) Test Guideline 303a. OECD Test Guideline 303a: simulation test—aerobic sewage treatment: activated sludge units

  • Potera C (2010) Transformation of silver nanoparticles in sewage sludge. Environ Health Perspect 118:a526–a527

    Article  Google Scholar 

  • Powers CM et al (2010) Silver exposure in developing zebrafish (Danio rerio): persistent effects on larval behavior and survival. Neurotoxicol Teratol 32:391–397

    Article  CAS  Google Scholar 

  • Powers CM et al (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33:708–714

    Article  CAS  Google Scholar 

  • Ratte H (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Reinsch BC et al (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000

    Article  CAS  Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  Google Scholar 

  • Scholz S et al (2008) The zebrafish embryo model in environmental risk assessment–applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15:394–404

    Article  CAS  Google Scholar 

  • Shafer M et al (1998) Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ Toxicol Chem 17:630–641

    Article  CAS  Google Scholar 

  • Strecker R et al (2011) Oxygen requirements of zebrafish (Danio rerio) embryos in embryo toxicity tests with environmental samples. Comp Biochem Physiol C 153:318–327

    Google Scholar 

  • Sylvain NJ et al (2010) Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers. Neurotoxicol Teratol 32:472–480

    Article  CAS  Google Scholar 

  • Trevarrow B et al (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4:669–679

    Article  CAS  Google Scholar 

  • Warila J et al (2001) A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks. Environ Toxicol Chem 20:432–441

    Article  CAS  Google Scholar 

  • Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Wu Y et al (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100:160–167

    Article  CAS  Google Scholar 

  • Xiu Z-M et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  Google Scholar 

  • Yang L et al (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28:245–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Fraunhofer Gesellschaft (FhG) internal programs under Grant No. Attract 692093. We thank Dr. Thorsten Klawonn for performing the ICP–OES analytics.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Fenske.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muth-Köhne, E., Sonnack, L., Schlich, K. et al. The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes. Ecotoxicology 22, 1264–1277 (2013). https://doi.org/10.1007/s10646-013-1114-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1114-5

Keywords

  • Silver nanoparticles
  • Silver
  • Zebrafish embryo
  • Sewage treatment processes
  • Toxicity