Ecotoxicology

, Volume 22, Issue 7, pp 1165–1173 | Cite as

Cholinesterase activities and behavioral changes in Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed to glufosinate ammonium herbicide

  • Paola M. Peltzer
  • Celina M. Junges
  • Andrés M. Attademo
  • Agustín Bassó
  • Paula Grenón
  • Rafael C. Lajmanovich
Article

Abstract

In this study, amphibian tadpoles of Hypsiboas pulchellus were exposed to herbicide Liberty®, which contains glufosinate ammonium (GLA), for 48 h to the following concentrations: 0 (control), 3.55, 4.74, 6.32, 8.43, 11.25, 15, 20, 26.6, and 35.5 mg GLA L−1. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, as well as swimming capabilities (swimming speed and mean distance) were measured in tadpoles whose concentrations displayed survival rates >85 %. Our results reveal that sublethal concentrations of GLA significantly inhibited both AChE and BChE activities in tadpoles with respect to the control, showing a concentration-dependent inhibitory effect. The highest inhibition percentages of AChE (50.86 %) and BChE (53.02 %) were registered in tadpoles exposed to 15 mg GLA L−1. At this concentration, a significant increase of the swimming speed and mean distance were found in exposed tadpoles with respect to the control, as well as a negative and significant correlation between swimming speed and BChE activity, thus suggesting that this enzyme inhibition is related to an increase in swimming speed. Therefore, exposure of tadpoles to GLA in the wild at concentrations similar to those tested here may have adverse consequences at population level because neurotransmission and swimming performance are essential for tadpole performance and survival.

Keywords

Cholinesterases Swimming activity Herbicide Tadpoles 

References

  1. Amiard-Triquet C (2009) Behavioral disturbances: the missing link between sub organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum Ecol Risk Assess 15:87–110. doi:10.1080/10807030802615543 CrossRefGoogle Scholar
  2. Anonymous (2010) How to feed a hungry world. Nature 466:531–532. doi:10.1038/466531a CrossRefGoogle Scholar
  3. ASIH (2004) Guidelines for use of live amphibians and reptiles in field and laboratory research, Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists. ASIH, Washington DCGoogle Scholar
  4. Avila-Garcia WV, Sanchez-Olguin E, Hulting AG, Mallory-Smith C (2012) Target-site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. multiflorum). Pest Manag Sci 68:1248–1254. doi:10.1002/ps.3286 CrossRefGoogle Scholar
  5. Ballesteros ML, Durando PE, Nores ML, Bistoni MDLA, Wunderlin DA (2009) Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ Pollut 157:1573–1580. doi:10.1016/j.envpol.2009.01.001 CrossRefGoogle Scholar
  6. Barata C, Solayan A, Porte C (2004) Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquat Toxicol 66:125–139. doi:10.1016/j.aquatox.2003.07.004 CrossRefGoogle Scholar
  7. Bonfanti P, Colombo A, Orsi F, Nizzetto I, Andrioletti M, Bacchetta R, Mantecca P, Fascio U, Vailati G, Vismara C (2004) Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development. Aquat Toxicol 70:189–200. doi:10.1016/j.aquatox.2004.09.007 CrossRefGoogle Scholar
  8. Boone MD, Semlitsch RD (2002) Interactions of an insecticide with competition and pond drying in amphibian communities. Ecol Appl 12:307–316. doi:10.1111/j.1523-1739.2001.99475.x CrossRefGoogle Scholar
  9. Britson CA, Threlkeld ST (1998) Abundance, metamorphosis, developmental, and behavioral abnormalities in Hyla chrysoscelis tadpoles following exposure to three agrichemicals and methyl mercury in outdoor mesocosms. Bull Environ Contam Toxicol 61:154–161CrossRefGoogle Scholar
  10. Broomhall SD (2004) Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog. J Appl Ecol 41:105–113. doi:10.1111/j.1365-2664.2004.00883.x CrossRefGoogle Scholar
  11. Broomhall SD (2005) Measuring chemical impacts on amphibians: ecotoxicity and behavioural data in governmental regulation. Appl Herpetol 2:259–285CrossRefGoogle Scholar
  12. Brunelli E, Bernabó I, Berg C, Lundstedt-Enkel K, Bonacci A, Tripepsi S (2009) Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat Toxicol 91:135–142. doi:10.1016/j.aquatox.2008.09.006 CrossRefGoogle Scholar
  13. Cooke AS (1971) Selective predation by newts on frog tadpoles treated with DDT. Nature 229:275–276. doi:10.1038/229275a0 CrossRefGoogle Scholar
  14. Denoël M, Bichot M, Ficetola GF, Delcourt J, Ylieff MY, Kestemont P, Poncin P (2010) Cumulative effects of a road de-icing salt on amphibian behavior. Aquat Toxicol 99:275–280. doi:10.1016/j.aquatox.2010.05.007 CrossRefGoogle Scholar
  15. Denoël M, D’Hooghe B, Ficetola GF, Brasseur C, De Pauw E, Thomé JP, Kestemont P (2012) Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology 21:1240–1250. doi:10.1007/s10646-012-0878-3 CrossRefGoogle Scholar
  16. Denoël M, Libon S, Kestemont P, Brasseur C, Focant JF, De Pauw E (2013) Effects of a sublethal pesticide exposure on locomotor behavior: a video-tracking analysis in larval amphibians. Chemosphere 90:945–951. doi:10.1016/j.chemosphere.2012.06.037 CrossRefGoogle Scholar
  17. Dinehart SK, Smith LM, McMurry ST, Anderson TA, Smith PN, Haukos DA (2009) Toxicity of a glufosinate-and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA. Sci Total Environ 407:1065–1071. doi:10.1016/j.scitotenv.2008.10.010 CrossRefGoogle Scholar
  18. Dinehart SK, Smith LM, McMurry ST, Smith PN, Anderson TA, Haukos DA (2010) Acute and chronic toxicity of roundup weathermax and ignite 280 SL to larval Spea multiplicata and S. bombifrons from the Southern High Plains USA. Environ Pollut 158:2610–2617. doi:10.1016/j.envpol.2010.05.006 CrossRefGoogle Scholar
  19. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Env Resour 28:137–167. doi:10.1146/annurev.energy.28.050302.105532 CrossRefGoogle Scholar
  20. Ebert E, Leist KH, Mayer D (1990) Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol 28:339–349. doi:10.1016/0278-6915(90)90108-Y CrossRefGoogle Scholar
  21. EFSA (2005) Conclusion regarding the peer review of the pesticide risk assessment of the active substance glufosinate. Scientific Report 27:1–81Google Scholar
  22. Ellman L, Courtey KD, Andreas V Jr, Featherstone RM (1961) A new rapid colorimetric determination of cholinesterase activity. Biochem Pharmacol 7:88–95. doi:10.1016/0006-2952(61)90145-9 CrossRefGoogle Scholar
  23. Faber MJ, Thompson DG, Stephenson GR, Boermans HJ (1998a) Impact of glufosinate-ammonium and bialaphos on the phytoplankton community of a small eutrophic northern lake. Environ Toxicol Chem 17:1282–1290CrossRefGoogle Scholar
  24. Faber MJ, Thompson DG, Stephenson GR, Kreutzweiser DP (1998b) Impact of glufosinate-ammonium and bialaphos on the zooplankton community of a small eutrophic northern lake. Environ Toxicol Chem 17:1291–1299CrossRefGoogle Scholar
  25. Ferreira Nunes BV, Durán R, Alfonso M, de Oliveira IM, Ferreira Faro LR (2010) Evaluation of the effects and mechanisms of action of glufosinate, an organophosphate insecticide, on striatal dopamine release by using in vivo microdialysis in freely moving rats. Arch Toxicol 84:777–785. doi:10.1007/s00204-010-0533-9 CrossRefGoogle Scholar
  26. Giusi G, Alo’ R, Crudo M, Di Vito A, Facciolo RM, Canonaco M (2010) Environmental stressors and neurobiological features of marine teleosts: histamine receptors as targets. Crit Rev Toxicol 40:620–632. doi:10.3109/10408444.2010.487479 CrossRefGoogle Scholar
  27. Gosner KL (1960) A simplified table for staging anuran embryos and larvae, with notes on identification. Herpetologica 16:183–190Google Scholar
  28. Gupta RC (2006) Classification and uses of organophosphates and carbamates. In: Gupta RC (ed) Toxicology of organophosphate and carbamate compounds. Elsevier, San Diego, pp 5–24CrossRefGoogle Scholar
  29. Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719CrossRefGoogle Scholar
  30. Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuoa Y, Parker J, Tsui M (2006) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect 114:40–50. doi:10.1289/ehp.8051 CrossRefGoogle Scholar
  31. IUCN (2010) IUCN red list of threatened species. Version 2010.4. http://www.iucnredlist.org. Accessed 10 Oct 2012.
  32. Jalaludin A, Ngim J, Bakar BHJ, Alias Z (2010) Preliminary findings of potentially resistant goosegrass (Eleusine indica) to glufosinate-ammonium in Malaysia. Weed Biol Manag 10:256–260. doi:10.1111/j.1445-6664.2010.00392.x CrossRefGoogle Scholar
  33. Jones DK, Hammond JI, Relyea RA (2009) Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family-level sensitivity. Environ Toxicol Chem 28:1939–1945. doi:10.1897/09-033.1 CrossRefGoogle Scholar
  34. Junges CM, Peltzer PM, Lajmanovich RC, Attademo AM, Cabagna-Zenklusen MC, Bassó A (2012) Toxicity of the fungicide trifloxystrobin on tadpoles and its effect on fish-tadpole interaction. Chemosphere 87:1348–1354. doi:10.1016/j.chemosphere.2012.02.026 CrossRefGoogle Scholar
  35. Kane AS, Salierno JD, Brewer SK (2005) Fish models in behavioral toxicology: automated techniques, updates and perspectives. In: Ostrander GK (ed) Techniques in aquatic toxicology. CRC Press, Boca Raton, pp 559–590Google Scholar
  36. Kingsley GR (1942) The direct biuret method for the determination of serum proteins as applied to photoelectric and visual calorimetry. J Lab Clin Med 27:840–845Google Scholar
  37. Koyama K, Goto K (1997) Cardiovascular effects of a herbicide containing glufosinate and a surfactant: in vitro and in vivo analyses in rats. Toxicol Appl Pharmacol 145:409–414. doi:10.1006/taap.1997.8196 CrossRefGoogle Scholar
  38. Kutlesa NJ, Caveney S (2001) Insecticidal activity of glufosinate through glutamine depletion in a caterpillar. Pest Manag Sci 57:25–32. doi:10.1002/1526-4998(200101 CrossRefGoogle Scholar
  39. Lajmanovich RC, Peltzer PM, Junges CM, Attademo AM, Sanchez LC, Bassó A (2010) Activity levels of B-esterases in the tadpoles of 11 species of frogs in the middle Paraná River floodplain: implication for ecological risk assessment of soybean crops. Ecotoxicol Environ Saf 73:1517–1524. doi:10.1016/j.ecoenv.2010.07.047 CrossRefGoogle Scholar
  40. Lajmanovich RC, Attademo AM, Peltzer PM, Jungues C, Cabagna M (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitions. Arch Environ Contam Toxicol 60:681–689. doi:10.1007/s00244-010-9578-2 CrossRefGoogle Scholar
  41. Lajmanovich RC, Junges CM, Attademo AM, Peltzer PM, Cabagna Zenklusen M, Bassó A (2013) Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Water Air Soil Pollut 112:1404. doi:10.1007/s11270-012-1404-1 CrossRefGoogle Scholar
  42. Larson SJ, Capel PD, Majewski (1997) Pesticides in surface water: distribution trends, and governing factors. Volume 3 of the series pesticides in the hydrologic system. Ann Arbor Press Inc, ChelseaGoogle Scholar
  43. López SL, Aiassa D, Benítez-Leitec S, Lajmanovich RC, Mañas F, Poletta G, Sánchez N, Simoniello MF, Carrasco AE (2012) Pesticides used in South American GMO-based agriculture: a review of their effects on humans and animal models. Adv Mol Toxicol 6:41–75CrossRefGoogle Scholar
  44. MAFF (1990) Evaluation no. 33: HOE 399866 (glufosinate-ammonium). MAFF, LondonGoogle Scholar
  45. Mann RM (2000) Toxicological impact of agricultural surfactants on Australian amphibians. Curtin University of Technology, SydneyGoogle Scholar
  46. Mao YC, Wang JD, Hung DZ, Deng JF, Yang CC (2011) Hyperammonemia following glufosinate-containing herbicide poisoning: a potential marker of severe neurotoxicity. Clin Toxicol (Phila) 49:48–52. doi:10.3109/15563650.2010.53918 CrossRefGoogle Scholar
  47. Mao YC, Hung DZ, Wu ML, Tsai WJ, Wang LM, Ger J, Deng JF, Yang CC (2012) Acute human glufosinate-containing herbicide poisoning. Clin Toxicol (Phila) 50:396–402. doi:10.3109/15563650.2012.676646 CrossRefGoogle Scholar
  48. Payne JF, Mathiew A, Melving W, Fancey LL (1996) Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 32:225–231. doi:10.1016/0025-326X(95)00112-Z CrossRefGoogle Scholar
  49. Peltzer PM, Lajmanovich RC, Attademo AM, Beltzer AH (2006) Diversity of anurans across agricultural ponds in Argentina. Biodivers Conserv 15:3499–3513CrossRefGoogle Scholar
  50. Punzo F (2005) Effects of insecticide (carbaryl) exposure on activity and swimming performance of tadpoles of the Rio Grande leopard frog, Rana berlandieri (Anura: Ranidae). Tex J Sci 57:263–272Google Scholar
  51. Reeves MK, Jensen P, Dolph CL, Holyoak M, Trust KA (2010) Multiple stressors and the cause of amphibian abnormalities. Ecol Monogr 80:423–440. doi:10.1890/09-0879.1 CrossRefGoogle Scholar
  52. Relyea RA, Edwards K (2010) What doesn’t kill you makes you sluggish: how sublethal pesticides alter predator–prey interactions. Copeia 4:558–567. doi:10.1643/CE-09-027 CrossRefGoogle Scholar
  53. Relyea RA, Hoverman JT (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Lett 9:1–15. doi:10.1111/j.1461-0248.2006.00966.x CrossRefGoogle Scholar
  54. Relyea RA, Jones DK (2009) The toxicity of Roundup Original Max® to 13 species of larval amphibians. Environ Toxicol Chem 28:2004–2008. doi:10.1897/09-021.1 CrossRefGoogle Scholar
  55. Richards SM, Kendall RJ (2003) Physical effects of chlorpyrifos on two stages of Xenopus laevis. J Toxicol Environ Health 66:75–91. doi:10.1080/15287390306461 CrossRefGoogle Scholar
  56. Robles-Mendoza C, Zúñiga-Lagunes SR, Ponce de León-Hill CA, Hernández-Soto J, Vanegas-Pérez C (2011) Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity. Aquat Toxicol 105:728–734. doi:10.1016/j.aquatox.2011.09.001 CrossRefGoogle Scholar
  57. Royer A, Beguin S, Sochor H, Communal P (2000) Determination of glufosinate ammonium and its metabolite (AT F064619 and AE F061517) residues in water by gas chromatography with tandem mass spectrometry after ion exchange cleanup and derivatization. J Agric Food Chem 48:5184–5189. doi:10.1021/jf000281u CrossRefGoogle Scholar
  58. Sánchez-Hernández JC (2006) Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination. In: Plattenberg RH (ed) Environmental pollution new research. Nova Science, New York, pp 1–48Google Scholar
  59. Sánchez-Hernández JC, Carbonell R, Henríquez Pérez A, Montealegre M, Gómez L (2004) Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study. Environ Poll 132:479–488. doi:10.1016/j.envpol.2004.05.008 CrossRefGoogle Scholar
  60. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi:10.1016/j.aquatox.2004.03.016 CrossRefGoogle Scholar
  61. Sparling DW, Cowman DF (2003) Amphibians and pesticides in pristine areas. In: Linder G, Krest SK, Sparling DW (eds) Amphibian decline: an integrated analysis of multiple stressor effects. Society of Environmental Toxicology and Chemistry SETAC, Pensacola, pp 257–264Google Scholar
  62. Sparling DW, Fellers GM (2009) Toxicity of two insecticides to California, USA, anurans and its relevance to declining amphibian populations. Environ Toxicol Chem 8:1696–1703. doi:10.1897/08-336.1 CrossRefGoogle Scholar
  63. Sturm A, de Assis HC, Hansen PD (1999) Cholinesterases of marine teleost fish: enzymological characterization and potential use in biomonitoring of neurotoxic contamination. Mar Environ Res 47:389–398. doi:10.1016/S0141-1136(98)00127-5 CrossRefGoogle Scholar
  64. Thompson HM, Walker CH, Hardy AR (1991) Changes in the activity of avian serum esterases following exposure to organophosphorus insecticides. Arch Environ Contam Toxicol 20:514–518. doi:10.1007/BF01065841 CrossRefGoogle Scholar
  65. USEPA (US Environmental Protection Agency) (1989) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Report EPA/600/4-89/001. Environmental Protection Agency, CincinnatiGoogle Scholar
  66. Van Buskirk J, McCollum SA (2000) Influence of tail shape on tadpole swimming performance. J Exp Biol 203:2149–2158Google Scholar
  67. Walker CH, Hopkin SP, Sibly RM, Peakall DB (2001) Principles of ecotoxicology, 2nd edn. Taylor and Francis, New YorkGoogle Scholar
  68. Wang C, Murphy SD (1982) Kinetic analysis of species difference in acetylcholinesterase sensitivity to organophosphate insecticides. Toxicol Appl Pharmacol 66:409–419CrossRefGoogle Scholar
  69. Ware GW, Whitacre DM (2004) The pesticide book, 6th edn. Thompson, FresnoGoogle Scholar
  70. Watanabe T, Sano T (1998) Neurological effects of glufosinate poisoning with a brief review. Hum Exp Toxicol 17:35–39. doi:10.1177/096032719801700106 CrossRefGoogle Scholar
  71. Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences. Bioscience 51:209–217. doi:10.1641/0006-3568(2001)051 CrossRefGoogle Scholar
  72. Wharfe J (2004) Hazardous chemicals in complex mixtures-A role for direct toxicity assessment. Ecotoxicology 13:413–421. doi:10.1023/B:ECTX.0000035292.00099.f0 CrossRefGoogle Scholar
  73. Widder PD, Bidwell JR (2006) Cholinesterase activity and behavior in chlorpyrifos-exposed Rana sphenocephala tadpoles. Environ Toxicol Chem 25:2446–2454. doi:10.1897/05-522R.1 CrossRefGoogle Scholar
  74. Widder PD, Bidwell JR (2008) Tadpole size, cholinesterase activity and swim speed in four frog species after exposure to sub-lethal concentrations of chlorpyrifos. Aquat Toxicol 88:9–18. doi:10.1016/j.aquatox.2008.02.008 CrossRefGoogle Scholar
  75. Zar JH (1999) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar
  76. Zeldin EL, Jury TP, Serres RA, McCown BH (2002) Tolerance to the herbicide glufosinate in transgenic cranberry (Vaccinium macrocarpon Ait.) and enhancement of tolerance in progeny. J Amer Soc Hort Sci 127:502–507Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paola M. Peltzer
    • 1
    • 2
  • Celina M. Junges
    • 1
    • 2
  • Andrés M. Attademo
    • 1
    • 2
  • Agustín Bassó
    • 2
  • Paula Grenón
    • 2
  • Rafael C. Lajmanovich
    • 1
    • 2
  1. 1.National Council for Scientific and Technical Research (CONICET)Buenos AiresArgentina
  2. 2.Ecotoxicology Laboratory, Faculty of Biochemistry and Biological Sciences (FBCB-UNL)Ciudad UniversitariaSanta FeArgentina

Personalised recommendations