Skip to main content
Log in

Cytochrome P4501A induction in primary cultures of embryonic European starling hepatocytes exposed to TCDD, PeCDF and TCDF

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Novel methods that predict the sensitivity of avian embryos to the toxic effects of dioxin-like compounds (DLCs) using either (1) knowledge of the identity of amino acids at key sites within the ligand binding domain of aryl hydrocarbon receptor 1 (AHR1) or (2) a luciferase reporter gene assay that measures AHR1 activation were recently reported. Results from both methods predict that European starling (Sturnus vulgaris) and domestic chicken (Gallus gallus domesticus) embryos have similar sensitivity to the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Chicken embryos are highly sensitive to DLC toxicity, and the prediction that starlings are equally sensitive is surprising given their widespread distribution and large population size. In an attempt to learn more about starling sensitivity to DLCs, we determined concentration-dependent effects of TCDD, PeCDF and TCDF on cytochrome P4501A4 and 1A5 (CYP1A4 and 1A5) mRNA levels in primary cultures of hepatocytes prepared from embryonic European starlings. It has been demonstrated that the sensitivity of avian hepatocytes to CYP1A4/5 induction is well correlated with LD50 values of DLCs for several avian species. The results of the present study indicate that European starling hepatocytes are indeed as sensitive as chicken hepatocytes to CYP1A4/5 induction after exposure to TCDD. However, starling hepatocytes are less sensitive than chicken hepatocytes to CYP1A4/5 induction by PeCDF and TCDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arenal CA, Halbrook RS, Woodruff M (2004) European starling (Sturnus vulgaris): avian model and monitor of polychlorinated biphenyl contamination at a superfund site in southern Illinois, USA. Environ Toxicol Chem 23:93–104

    Article  CAS  Google Scholar 

  • Bastien LJ, Kennedy SW, Lorenzen A (1997) Ethoxyresorufm O-deethylase (EROD) induction by halogenated aromatic hydrocarbons (HAHS) in chicken embryo hepatocyte cultures: time-dependent effects on the dose-response curves. Organohal Comp 34:215–220

    CAS  Google Scholar 

  • Brunstrom B (1988) Sensitivity of embryos from duck, goose, herring gull, and various chicken breeds to 3,3′,4,4′-tetrachlorobiphenyl. Poult Sci 67:52–57

    Article  CAS  Google Scholar 

  • Brunstrom B, Broman D, Naf C (1990) Embryotoxicity of polycyclic aromatic hydrocarbons (PAHs) in three domestic avian species, and of PAHs and coplanar polychlorinated biphenyls (PCBs) in the common eider. Environ Pollut 67:133–143

    Article  CAS  Google Scholar 

  • Cohen-Barnhouse AM, Zwiernik MJ, Link JE, Fitzgerald SD, Kennedy SW, Herve JC, Giesy JP, Wiseman S, Yang Y, Jones PD, Wan Y, Collins B, Newsted JL, Kay D, Bursian SJ (2011) Sensitivity of Japanese quail (Coturnix japonica), common pheasant (Phasianus colchicus) and white leghorn chicken (Gallus gallus domesticus) embryos to in ovo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8- pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Toxicol Sci 119:93–103

    Article  CAS  Google Scholar 

  • Elliott JE, Wilson LK, Langelier KW, Norstrom RJ (1996) Bald eagle mortality and chlorinated hydrocarbon contaminants in livers from British Columbia, Canada, 1989–1994. Environ Pollut 94:9–18

    Article  CAS  Google Scholar 

  • Farmahin R, Wu D, Crump D, Herve JC, Jones SP, Hahn ME, Karchner SI, Giesy JP, Bursian SJ, Zwiernik MJ, Kennedy SW (2012) Sequence and in vitro function of chicken, ring-necked pheasant and Japanese quail AHR1 predict in vivo sensitivity to dioxins. Environ Sci Technol 46:2967–2975

    Article  CAS  Google Scholar 

  • Farmahin R, Manning Gillian E, Crump Doug, Dongmei Wu, Mundy Lukas, Jones Stephanie P, Hahn MarkE, Karchner sibel I, Giesy John, Bursian Steven J, Zwiernik Matthew J, Kennedy Sean W (2013) Amino acid sequence of the ligand binding domain of the aryl hydrocarbon receptor 1 (AHR1) predicts sensitivity of wild birds to effects of dioxin-like compounds. Toxicol Sci 131:139–152

    Article  CAS  Google Scholar 

  • Feare C (1984) The Starling. Oxford University Press, Oxford

    Google Scholar 

  • Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ (1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140:173–179

    Article  CAS  Google Scholar 

  • Giesy JP, Ludwig JP, Tillitt DE (1994) Deformities in birds of the Great Lakes region assigning causality. Environ Sci Technol 28:128A–135A

    CAS  Google Scholar 

  • Gilbertson M, Kubiak T, Ludwig J, Fox G (1991) Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS) in colonial fish-eating birds: similarity to chick-edema disease. J Toxicol Environ Health 33:455–520

    Article  CAS  Google Scholar 

  • Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160

    Article  CAS  Google Scholar 

  • Halbrook RS, Arenal CA (2003) Field studies using European starlings to establish causality between PCB exposure and reproductive effects. Hum Ecol Risk Assess 9:121–136

    Article  CAS  Google Scholar 

  • Head JA, Kennedy SW (2007) Same-sample analysis of ethoxyresorufin-O-deethylase activity and cytochrome P4501A mRNA abundance in chicken embryo hepatocytes. Anal Biochem 360:294–302

    Article  CAS  Google Scholar 

  • Head JA, Kennedy SW (2010) Correlation between an in vitro and an in vivo measure of dioxin sensitivity in birds. Ecotoxicology 19:377–382

    Article  CAS  Google Scholar 

  • Head JA, Hahn ME, Kennedy SW (2008) Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. Environ Sci Technol 42:7535–7541

    Article  CAS  Google Scholar 

  • Herve JC, Crump D, Giesy JP, Zwiernik MJ, Bursian SJ, Kennedy SW (2010a) Ethoxyresorufin O-deethylase induction by TCDD, PeCDF and TCDF in ring-necked pheasant and Japanese quail hepatocytes: time-dependent effects on concentration-response curves. Toxicol In Vitro 24:1301–1305

    Article  CAS  Google Scholar 

  • Herve JC, Crump D, Jones SP, Mundy LJ, Giesy JP, Zwiernik MJ, Bursian SJ, Jones PD, Wiseman SB, Wan Y, Kennedy SW (2010b) Cytochrome P4501A induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and two chlorinated dibenzofurans in primary hepatocyte cultures of three avian species. Toxicol Sci 113:380–391

    Article  CAS  Google Scholar 

  • Herve JC, Crump DL, McLaren KK, Giesy JP, Zwiernik MJ, Bursian SJ, Kennedy SW (2010c) 2,3,4,7,8-pentachlorodibenzofuran is a more potent cytochrome P4501A inducer than 2,3,7,8-tetrachlorodibenzo-p-dioxin in herring gull hepatocyte cultures. Environ Toxicol Chem 29:2088–2095

    CAS  Google Scholar 

  • Hoffman DJ, Rattner BA, Sileo L, Docherty D, Kubiak TJ (1987) Embryotoxicity, teratogenicity, and aryl hydrocarbon hydroxylase activity in Forster’s terns on Green Bay, Lake Michigan. Environ Res 42:176–184

    Article  CAS  Google Scholar 

  • Karchner SI, Franks DG, Kennedy SW, Hahn ME (2006) The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 103:6252–6257

    Article  CAS  Google Scholar 

  • Kennedy SW, Jones SP, Bastien LJ (1995) Efficient analysis of cytochrome P4501A catalytic activity, porphyrins, and total proteins in chicken embryo hepatocyte cultures with a fluorescence plate reader. Anal Biochem 226:362–370

    Article  CAS  Google Scholar 

  • Kennedy SW, Lorenzen A, Jones SP, Hahn ME, Stegeman JJ (1996) Cytochrome P4501A induction in avian hepatocyte cultures: a promising approach for predicting the sensitivity of avian species to toxic effects of halogenated aromatic hydrocarbons. Toxicol Appl Pharmacol 141:214–230

    CAS  Google Scholar 

  • Kennedy SW, Fox GA, Trudeau S, Bastien LJ, Jones SP (1998) Highly carboxylated porphyrin concentration: a biochemical marker of PCB exposure in herring gulls. Mar Environ Res 46:65–69

    Article  CAS  Google Scholar 

  • Kennedy SW, Jones SP, Elliott JE (2003) Sensitivity of bald eagle (Haliaeetus leucocephalus) hepatocyte cultures to induction of cytochrome P4501A by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ecotoxicology 12:163–170

    Article  CAS  Google Scholar 

  • Kumar KS, Kannan K, Giesy JP, Masunaga S (2002) Distribution and elimination of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and p,p’-DDE in tissues of bald eagles from the Upper Peninsula of Michigan. Environ Sci Technol 36:2789–2796

    Article  CAS  Google Scholar 

  • Lorenzen A, Shutt LJ, Kennedy SW (1997) Sensitivity of common tern (Sterna hirundo) embryo hepatocyte cultures to CYP1A induction and porphyrin accumulation by halogenated aromatic hydrocarbons and common tern egg extracts. Arch Environ Contam Toxicol 32:126–134

    Article  CAS  Google Scholar 

  • Manning GE, Farmahin R, Crump D, Jones SP, Klein J, Konstantinov A, Potter D, Kennedy SW (2012) A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD(50) of polychlorinated biphenyls in avian species. Toxicol Appl Pharmacol 263:390–401

    Article  CAS  Google Scholar 

  • Manning GE, Mundy LJ, Crump D, Jones SP, Chiu S, Klein J, Konstantinov A, Potter D, Kennedy SW (2013) Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: comparisons with AHR1-mediated reporter gene activity and in ovo toxicity. Toxicol Appl Pharmacol 266:38–47

    Article  CAS  Google Scholar 

  • Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, Ema M, Sogawa K, Yasuda M, Katsuki M, Fujii-Kuriyama Y (1997) Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2:645–654

    Article  CAS  Google Scholar 

  • Mundy LJ, Jones SP, Crump D, Herve JC, Konstantinov A, Utley F, Potter D, Kennedy SW (2010) Highly purified hexachlorobenzene induces cytochrome P4501A in primary cultures of chicken embryo hepatocytes. Toxicol Appl Pharmacol 248:185–193

    Article  CAS  Google Scholar 

  • Mundy LJ, Crump D, Jones SP, Konstantinov A, Utley F, Potter D, Kennedy SW (2012) Induction of cytochrome P4501A by highly purified hexachlorobenzene in primary cultures of ring-necked pheasant and Japanese quail embryo hepatocytes. Comp Biochem Physiol C: Toxicol Pharmacol 155:498–505

    Article  CAS  Google Scholar 

  • Nosek JA, Craven SR, Karasov WH, Peterson RE (1993) 2,3,7,8-Tetrachlorodibenzo-p-dioxin in terrestrial environments—implications for resource-management. Wildlife Soc Bull 21:179–187

    Google Scholar 

  • Peterson RE, Theobald HM, Kimmel GL (1993) Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. Crit Rev Toxicol 23:283–335

    Article  CAS  Google Scholar 

  • Ricklefs RE, Smeraski CA (1983) Variation in incubation period within a population of the European starling. Auk 100:926–931

    Google Scholar 

  • Sanderson JT, Kennedy SW, Giesy JP (1998) In vitro induction of ethoxyresorufin-o-deethylase and porphyrins by halogenated aromatic hydrocarbons in avian primary hepatocytes. Environ Toxicol Chem 17:2006–2018

    CAS  Google Scholar 

  • Schmidt JV, Carver LA, Bradfield CA (1993) Molecular characterization of the murine ahr gene—organization, promoter analysis, and chromosomal assignment. J Biol Chem 268:22203–22209

    CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Stickel WH, Stickel LF, Dyrland RA, Hughes DL (1984) Aroclor-1254 residues in birds—lethal levels and loss rates. Arch Environ Contam Toxicol 13:7–13

    Article  CAS  Google Scholar 

  • U.S.EPA (1994). Method 1613: tetra- through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS. US Environmental Protection Agency Office of Water

  • Van den Steen E, Covaci A, Jaspers VL, Dauwe T, Voorspoels S, Eens M, Pinxten R (2007) Experimental evaluation of the usefulness of feathers as a non-destructive biomonitor for polychlorinated biphenyls (PCBs) using silastic implants as a novel method of exposure. Environ Int 33:257–264

    Article  Google Scholar 

  • Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19:2835–2843

    Article  CAS  Google Scholar 

  • Walker MK, Catron TF (2000) Characterization of cardiotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related chemicals during early chick embryo development. Toxicol Appl Pharmacol 167:210–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pamela Martin, Glenn Barrett and Kimberly O’Hare for their leadership and contributions to all field work. This Project was funded by Environment Canada’s Ecotoxicology and Wildlife Health Division and by a University of Ottawa scholarship to Reza Farmahin.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean W. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmahin, R., Crump, D., Jones, S.P. et al. Cytochrome P4501A induction in primary cultures of embryonic European starling hepatocytes exposed to TCDD, PeCDF and TCDF. Ecotoxicology 22, 731–739 (2013). https://doi.org/10.1007/s10646-013-1065-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1065-x

Keywords

Navigation