Skip to main content

Advertisement

Log in

Effects of vegetative-periodic-induced rhizosphere variation on the uptake and translocation of metals in Phragmites australis (Cav.) Trin ex. Steudel growing in the Sun Island Wetland

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

To evaluate the vegetative periodic effect of rhizosphere on the patterns of metal bioaccumulation, the concentrations of Mg, K, Ca, Mn, Zn, Fe, Cu, Cr, Ni, Cd and Pb in the corresponding rhizosphere soil and tissues of Phragmites australis growing in the Sun Island wetland (Harbin, China) were compared. The concentrations of Zn, Fe, Cu, Cr, Ni, Cd and Pb in roots were higher than in shoots, suggesting that roots are the primary accumulation organs for these metals and there exists an exclusion strategy for metal tolerance. In contrast, the rest of the metals showed an opposite trend, suggesting that they were not restricted in roots. Harvesting would particularly be an effective method to remove Mn from the environment. The concentrations of metals in shoots were generally higher in autumn than in summer, suggesting that Ph. australis possesses an efficient root-to-shoot translocation system, which is activated at the end of the growing season and allows more metals into the senescent tissues. Furthermore, metal bioaccumulation of Ph. australis was affected by vegetative periodic variation through the changing of physicochemical and microbial conditions. The rhizospheric microbial characteristics were significantly related to the concentrations of Mg, K, Zn, Fe and Cu, suggesting that microbial influence on metal accumulation is specific and selective, not eurytopic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baldantoni D, Alfani A, Di Tommasi P, Bartoli G, De Virzo Santo A (2004) Assessment of macro and microelement accumulation capability of two aquatic plants. Environ Pollut 130:149–156

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek Int J G 81:343–351

    Article  CAS  Google Scholar 

  • Batty LC, Baker AJM, Wheeler BD, Curtis CD (2000) The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex Steudel. Ann Bot Lond 86:647–653

    Article  CAS  Google Scholar 

  • Bennisse R, Labat M, El Asli A, Brhada F, Chandad F, Lorquin J, Liegbott PP, Hibti M, Qatibi AI (2004) Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J Microbiol Biotechnol 20:759–766

    Article  CAS  Google Scholar 

  • Bonanno G (2011) Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Safe 74:1057–1064

    Article  CAS  Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    Article  CAS  Google Scholar 

  • Bragato C, Schiavon M, Polese R, Ertani A, Pittarello M, Malagoli M (2009) Seasonal variations of Cu, Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin. Ex Steud. in a constructed wetland of North Italy. Desalination 246:35–44

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Brunham W, Bendell LI (2011) The effect of temperature on the accumulation of cadmium, copper, zinc, and lead by Scirpus acutus and Typha latifolia: a comparative analysis. Water Air Soil Pollut 219:417–428

    Article  CAS  Google Scholar 

  • Burke DJ, Weis JS, Weis P (2000) Release of metals by the leaves of salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf S 51:153–159

    Article  CAS  Google Scholar 

  • Chen H, Cutright TJ (2003) Preliminary evaluation of microbially mediated precipitation of cadmium, chromium, and nickel by rhizosphere consortium. J Environ Eng 129:4–9

    Article  CAS  Google Scholar 

  • Choi J, Park JW (2005) Competitive adsorption of heavy metals and uranium on soil constituents and microorganism. Geosci J 9:53–61

    Article  CAS  Google Scholar 

  • Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol Ecol 44:319–328

    Article  CAS  Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  CAS  Google Scholar 

  • de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Derry AM, Staddon WJ, Kevan PG, Trevors JT (1999) Functional diversity and community structure of microorganisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers Conserv 8:205–221

    Article  Google Scholar 

  • Du Laing G, Vanthuyne DRJ, Vandecasteele B, Tack FMG, Verloo MG (2007) Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environ Pollut 147:615–625

    Article  Google Scholar 

  • Du Laing G, Van de Moortel AMK, Moors W, De Grauwe P, Meers E, Tack FMG, Verloo MG (2009) Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol Eng 35:310–318

    Article  Google Scholar 

  • Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    Article  CAS  Google Scholar 

  • Faucon MP, Shutcha N, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    Article  Google Scholar 

  • Fürtig K, Pavelic D, Brunold C, Brändle R (1999) Copper-and-iron induced injuries in roots and rhizomes of reed (Phragmites australis). Limnologica 29:60–63

    Article  Google Scholar 

  • Gambrell RP (1994) Trace and toxic metals in wetlands—a review. J Environ Qual 23:883–891

    Article  CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bioresour Technol 97:1484–1489

    Article  CAS  Google Scholar 

  • Gries C, Garbe D (1989) Bioamss and nitrogen, phosphorus and heavy metal content of Phragmites australis during the third growing season in a root zone wastewater treatment. Archiv für Hydrobiologie 117:97–105

    Google Scholar 

  • Gupta M, Chandra P (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ Pollut 103:327–332

    Article  CAS  Google Scholar 

  • Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu JG (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563

    Article  CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  Google Scholar 

  • Howell CR (2003) Mechanism employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70:565–569

    Article  CAS  Google Scholar 

  • Jana S (1988) Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and biochemical plant parameters. Water Air Soil Pollut 38:105–109

    CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Kandeler E (1995) Organic matter by wet combustion. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology, 1st edn. Springer, Heidelberg, pp 397–398

    Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  Google Scholar 

  • Keller BEM, Lajtha K, Cristofor S (1998) Trace metal concentration in the sediments and plants of the Danube delta, Romania. Wetlands 40:42–50

    Article  Google Scholar 

  • Kováčik J, Grúz J, Klejdus B, Štork F, Hedbavny J (2012) Accumulation of metals and selected nutritional parameters in the field-grown chamomile anthodia. Food Chem 131:55–62

    Article  Google Scholar 

  • Larue C, Korboulewsky N, Wang R, Mévy J (2010) Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Bioresour Technol 101:7951–7957

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Levine SN, Rudnick DT, Kelly JR, Morton RD, Buttel LA (1990) Pollutant dynamics as influenced by seagrass beds: experiments with tributyltin in Thalassia microcosms. Mar Environ Res 30:297–322

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation—prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Lepp NW (2007) Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 67:20–28

    Article  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  Google Scholar 

  • Matthews H, Thornton I (1982) Seasonal and species variation in the content of cadmium and associated metals in pasture plants at Shipham. Plant Soil 66:181–193

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Peverly JH, Surface JM, Wang T (1995) Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecol Eng 5:21–35

    Article  Google Scholar 

  • Rajkumar K, Sivakumar S, Senthilkumar P, Prabha D, Subbhuraam CV, Song YC (2009) Effects of selected heavy metals (Pb, Cu, Ni, and Cd) in the aquatic medium on the restoration potential and accumulation in the stem cuttings of the terrestrial plant, Talinum triangulare Linn. Ecotoxicology 18:952–960

    Article  CAS  Google Scholar 

  • Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review. J Plant Nutr 27:959–975

    Article  CAS  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentrations on photosynthesis and plant productivity. Curr Sci India 99:46–57

    CAS  Google Scholar 

  • Rengel Z (2004) Heavy metals as essential nutrients. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, New York, pp 271–285

    Chapter  Google Scholar 

  • Rossato LV, Nicoloso FT, Farias JG, Cargnelluti D, Tabaldi LA, Antes FG, Dressler VL, Morsch VM, Schetinger MRC (2012) Effects of lead on the growth, lead accumulation and physiological responses of Pluchea sagittalis. Ecotoxicology 21:111–123

    Article  CAS  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    CAS  Google Scholar 

  • Sawidis T, Chettri MK, Zachariadis GA, Stratis JA (1995) Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicol Environ Safe 32:73–80

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorous limitation of coastal ecosystem processes. Science 299:563–565

    Article  CAS  Google Scholar 

  • Tinker PB (1984) The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil 76:77–91

    Article  CAS  Google Scholar 

  • Tu C, Ma LG (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Van der Merwe CG, Schoonbee HJ, Pretorius J (1990) Observations on concentrations of the heavy metals zinc, manganese, nickel and iron in the water, in the sediments and in two aquatic macrophytes, Typha capensis (Rohrb.) N.E. Br. and Arundo donax L., of a stream affected by goldmine and industrial effluents. Water SA 16:119–124

    Google Scholar 

  • Vymazal J, Kröpfelová L, Švehla J, Chrastný V, Štíchová J (2009) Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol Eng 35:303–309

    Article  Google Scholar 

  • Wang H, Jia Y, Wang S, Zhu H, Wu X (2009) Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis. J Hazard Mater 167:641–646

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Weis JS, Windham L, Weis P (2003) Patterns of metal accumulation in leaves of the tidal marsh plants Spartina alterniflora Loisel and Phragmites australis Cav. Trin Ex Steud. over the growing season. Wetlands 23:459–465

    Article  Google Scholar 

  • Welsh RPH, Denny P (1980) The uptake of lead and copper by submerged aquatic macrophytes in two English lakes. J Ecol 68:443–455

    Article  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  Google Scholar 

  • Yang YH, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on dna sequence diversity of soil microbial community: a study with RAPD marker. Microbiol Ecol 39:72–79

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Ye ZH, Whiting SN, Lin ZQ, Lytle CM, Qian JH, Terry N (2001) Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. J Environ Qual 30:1464–1473

    Article  CAS  Google Scholar 

  • Zabłudowska E, Kowalska J, Jedynak Ł, Wojas S, Skłodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation—what can we learn from field and hydroponic studies? Chemosphere 77:301–307

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51179041), the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201003), the National Creative Research Group from the National Natural Science Foundation of China (51121062), and the State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, China (HIT) (2011TS07).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Fang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Wang, L., Ma, F. et al. Effects of vegetative-periodic-induced rhizosphere variation on the uptake and translocation of metals in Phragmites australis (Cav.) Trin ex. Steudel growing in the Sun Island Wetland. Ecotoxicology 22, 608–618 (2013). https://doi.org/10.1007/s10646-013-1052-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1052-2

Keywords

Navigation