Skip to main content
Log in

Inhibition of cellular efflux pumps involved in multi xenobiotic resistance (MXR) in echinoid larvae as a possible mode of action for increased ecotoxicological risk of mixtures

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In marine organisms the multi xenobiotic resistance (MXR) mechanism via e.g. P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) is an important first line of defense against contaminants by pumping contaminants out of the cells. If compounds would impair the MXR mechanism, this could result in increased intracellular levels of other compounds, thereby potentiating their toxicity. A calcein-AM based larval cellular efflux pump inhibition assay (CEPIA) was developed for echinoid (Psammechinus miliaris) larvae and applied for several contaminants. The larval CEPIA revealed that triclosan (TCS) and the nanoparticles P-85® (P-85) were 124 and 155× more potent inhibitors (IC50 0.5 ± 0.05 and 0.4 ± 0.1 μM, respectively) of efflux pumps than the model inhibitor Verapamil (VER). PFOS (heptadecafluorooctane sulfonic acid) and pentachlorophenol also were more potent than VER, 24 and 5×, respectively. Bisphenol A and o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT) inhibited efflux pumps with a potency 3× greater than VER. In a 48 h early life stage bioassay with P. miliaris, exposure to a non-lethal concentration of the inhibitors TCS, VER, the model MRP inhibitor MK-571, the nanoparticles P-85 and the model P-gp inhibitor PSC-833, increased the toxicity of the toxic model substrate for efflux pumps vinblastine by a factor of 2, 4, 4, 8 and 16, respectively. Our findings show that several contaminants accumulating in the marine environment inhibit cellular efflux pumps, which could potentiate toxic effects of efflux pumps substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter 1. Annu Rev Pharmacol Toxicol 39:361–398

    Article  CAS  Google Scholar 

  • Anselmo HMR, Koerting L, Devito S, van den Berg JHJ, Dubbeldam M, Kwadijk C, Murk AJ (2011) Early life developmental effects of marine persistent organic pollutants on the sea urchin Psammechinus miliaris. Ecotoxicol Environ Saf 74:2182–2192

    Article  CAS  Google Scholar 

  • Bain LJ, Leblanc GA (1996) Interaction of structurally diverse pesticides with the human mdr1 gene product p-glycoprotein. Toxicol Appl Pharmacol 141:288–298

    CAS  Google Scholar 

  • Barbara Holland T, Epel D (1993) Multixenobiotic resistance in Urechis caupo embryos: protection from environmental toxins. Biol Bull 185:355–364

    Article  Google Scholar 

  • Bard SM (2000) Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat Toxicol 48:357–389

    Article  CAS  Google Scholar 

  • Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF (2001) Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther 296:551–557

    CAS  Google Scholar 

  • Batrakova EV, Li S, Alakhov VY, Elmquist WF, Miller DW, Kabanov AV (2003) Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85. Pharm Res 20:1581–1590

    Article  CAS  Google Scholar 

  • Batrakova EV, Li S, Li Y, Alakhov VY, Kabanov AV (2004) Effect of pluronic P85 on ATPase activity of drug efflux transporters. Pharm Res 21:2226–2233

    Article  CAS  Google Scholar 

  • Bosnjak I, Uhlinger KR, Heim W, Smital T, FranekicÌ-CÌŒolicÌ J, Coale K, Epel D, Hamdoun A (2009) Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in Sea Urchin embryos. Environ Sci Technol 43:8374–8380

    Article  CAS  Google Scholar 

  • Bradley G, Juranka PF, Ling V (1988) Mechanism of multidrug resistance. Biochim Biophys Acta Rev Cancer 948:87–128

    Article  CAS  Google Scholar 

  • Daughton C (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732

    Article  Google Scholar 

  • Epel D, Cole B, Hamdoun A, Thurber RV (2006) The sea urchin embryo as a model for studying efflux transporters: roles and energy cost. Mar Environ Res 62:S1–S4

    Article  CAS  Google Scholar 

  • Epel D, Luckenbach T, Stevenson CN, MacManus-Spencer LA, Hamdoun A, Smital T (2008) Efflux transporters: newly appreciated roles in protection against pollutants. Environ Sci Technol 42:3914–3920

    Article  CAS  Google Scholar 

  • Essodaïgui M, Broxterman HJ, Garnier-Suillerot A (1998) Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein. Biochemistry 37:2243–2250

    Article  Google Scholar 

  • Eufemia NA, Epel D (2000) Induction of the multixenobiotic defense mechanism (MXR), P-glycoprotein, in the mussel Mytilus californianus as a general cellular response to environmental stresses. Aquat Toxicol 49:89–100

    Article  CAS  Google Scholar 

  • Evers R, De Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P (2000) Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 83:375–383

    Article  CAS  Google Scholar 

  • Fair PA, Lee H-B, Adams J, Darling C, Pacepavicius G, Alaee M, Bossart GD, Henry N, Muir D (2009) Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254

    Article  CAS  Google Scholar 

  • Faria M, Navarro A, Luckenbach T, Piña B, Barata C (2011) Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants. Aquat Toxicol 101:78–87

    Article  CAS  Google Scholar 

  • Ford JM (1996) Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer 32:991–1001

    Article  Google Scholar 

  • Galgani F, Cornwall R, Toomey BH, Epel DD (1996) Interaction of environmental xenobiotics with a multixenobiotic defense mechanism in the bay mussel Mytilus galloprovincialis from the coast of California. Environ Toxicol Chem 15:325–331

    CAS  Google Scholar 

  • Germann UA (1993) Molecular analysis of the multidrug transporter. Cytotechnology 12:33–62

    Article  CAS  Google Scholar 

  • Gutleb AC, Freitas J, Murk AJ, Verhaegen S, Ropstad E, Udelhoven T, Hoffmann L, Audinot J-N (2012) NanoSIMS50 - a powerful tool for elucidation of cellular localization and quantification of intracellular concentrations of halogenated organic compounds. Anal Bioanal Chem. doi:10.1007/s00216-012-6066-8

  • Hamdoun AM, Cherr GN, Roepke TA, Epel D (2004) Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Dev Biol 276:452–462

    Article  CAS  Google Scholar 

  • Holló Z, Homolya L, Davis CW, Sarkadi B (1994) Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim Biophys Acta Biomembr 1191:384–388

    Article  Google Scholar 

  • Jin H, Audus KL (2005) Effect of bisphenol A on drug efflux in BeWo, a human trophoblast-like cell line. Placenta 26(Supplement):S96–S103

    Article  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta Biomembr 455:152–162

    Article  CAS  Google Scholar 

  • Kurelec B (1992) The multixenobiotic resistance mechanism in aquatic organisms. Crit Rev Toxicol 22:23–43

    Article  CAS  Google Scholar 

  • Kurelec B (1997) A new type of hazardous chemical: the chemosensitizers of multixenobiotic resistance. Environ Health Perspect 105:855–860

    CAS  Google Scholar 

  • Kurelec B, Lucic D, Pivcevic B, Krea S (1995) Induction and reversion of multixenobiotic resistance in the marine snail Monodonta turbinata. Mar Biol 123:305–312

    Article  CAS  Google Scholar 

  • Kurelec B, Krca S, Lucic D (1996) Expression of multixenobiotic resistance mechanism in a marine mussel Mytilus galloprovincialis as a biomarker of exposure to polluted environments. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:283–289

    Article  Google Scholar 

  • Litman T, Druley TE, Stein WD, Bates SE (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58:931–959

    Article  CAS  Google Scholar 

  • Luckenbach T, Epel D (2008) ABCB- and ABCC-type transporters confer multixenobiotic resistance and form an environment-tissue barrier in bivalve gills. Am J Physiol Regul Integr Comp Physiol 294:R1919–R1929

    Article  CAS  Google Scholar 

  • Luckenbach T, Altenburger R, Epel D (2008) Teasing apart activities of different types of ABC efflux pumps in bivalve gills using the concepts of independent action and concentration addition. Mar Environ Res 66:75–76

    Article  CAS  Google Scholar 

  • Mearns AJ, Reish DJ, Oshida PS, Ginn T (2010) Effects of pollution on marine organisms. Water Environ Res 82:2001–2046

    Article  CAS  Google Scholar 

  • Mechetner EB, Roninson IB (1992) Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci USA 89:5824–5828

    Article  CAS  Google Scholar 

  • Mima T, Joshi S, Gomez-Escalada M, Schweizer HP (2007) Identification and characterization of TriABC-OpmH, a triclosan efflux pump of pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 189:7600–7609

    Article  CAS  Google Scholar 

  • Nnodu U, Whalen MM (2008) Pentachlorophenol decreases ATP levels in human natural killer cells. J Appl Toxicol 28:1016–1020

    CAS  Google Scholar 

  • Okumura T, Nishikawa Y (1996) Gas chromatography—mass spectrometry determination of triclosans in water, sediment and fish samples via methylation with diazomethane. Anal Chim Acta 325:175–184

    Article  CAS  Google Scholar 

  • Oosterhuis B, Vukman K, Vági E, Glavinas H, Jablonkai I, Krajcsi P (2008) Specific interactions of chloroacetanilide herbicides with human ABC transporter proteins. Toxicology 248:45–51

    Article  CAS  Google Scholar 

  • De Souza MB, Barros TV, Torrezan E, Cavalcanti AL, Figueiredo RC, Marques-Santos LF (2010) Characterization of functional activity of ABCB1 and ABCC1 proteins in eggs and embryonic cells of the sea urchin Echinometra lucunter. Biosci Rep 17:257–265

    Article  Google Scholar 

  • Reish DJ, Oshida PS, Mearns AJ, Ginn TC, Buchman M (2000) Effects of pollution on marine organisms. Water Environ Res. vol 72, p 59

  • Schäfer S, Bickmeyer U, Koehler A (2009) Measuring Ca2+-signalling at fertilization in the sea urchin Psammechinus miliaris: alterations of this Ca2+-signal by copper and 2,4,6-tribromophenol. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 150:261–269

    Article  Google Scholar 

  • Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  CAS  Google Scholar 

  • Schipper CA, Dubbeldam M, Feist SW, Rietjens IMCM, Murk AT (2008) Cultivation of the heart urchin Echinocardium cordatum and validation of its use in marine toxicity testing for environmental risk assessment. J Exp Mar Biol Ecol 364:11–18

    Article  CAS  Google Scholar 

  • Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7

    Article  CAS  Google Scholar 

  • Shipp LE, Hamdoun A (2012) ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Dev Dyn 241:1111–1124

    Article  CAS  Google Scholar 

  • Smital T, Sauerborn R, Pivčević B, Krča S, Kurelec B (2000) Interspecies differences in P-glycoprotein mediated activity of multixenobiotic resistance mechanism in several marine and freshwater invertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 126:175–186

    Article  CAS  Google Scholar 

  • Smital T, Luckenbach T, Sauerborn R, Hamdoun AM, Vega RL, Epel D (2004) Emerging contaminants—pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat Res Fundam Mol Mech Mutagen 552:101–117

    Article  CAS  Google Scholar 

  • Stark JD, Walthall WK (2003) Agricultural adjuvants: acute mortality and effects on population growth rate of Daphnia pulex after chronic exposure. Environ Toxicol Chem 22:3056–3061

    Article  CAS  Google Scholar 

  • Stevenson CN, MacManus-Spencer LA, Luckenbach T, Luthy RG, Epel D (2006) New Perspectives on perfluorochemical ecotoxicology: inhibition and induction of an efflux transporter in the marine mussel, mytilus californianus. Environ Sci Technol 40:5580–5585

    Article  CAS  Google Scholar 

  • Tan B, Piwnica-Worms D, Ratner L (2000) Multidrug resistance transporters and modulation. Curr Opin Oncol 12:450–458

    Article  CAS  Google Scholar 

  • Teodori E, Dei S, Scapecchi S, Gualtieri F (2002) The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Farmaco 57:385–415

    Article  CAS  Google Scholar 

  • van Asperen J, Schinkel AH, Beijnen JH, Nooijen WJ, Borst P, van Tellingen O (1996) Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient mice. J Natl Cancer Inst 88:994–999

    Article  Google Scholar 

  • Varma MVS, Ashokraj Y, Dey CS, Panchagnula R (2003) P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res 48:347–359

    Article  CAS  Google Scholar 

  • Villalain J, Mateo CR, Aranda FJ, Shapiro S, Micol V (2001) Membranotropic effects of the antibacterial agent triclosan. Arch Biochem Biophys. 390:128–136

    Google Scholar 

  • Weinbach EC (1956) Pentachlorophenol and mitochondrial adenosinetriphosphatase. J Biol Chem 221:609–618

    CAS  Google Scholar 

  • Wy Hu, Jones PD, DeCoen W, King L, Fraker P, Newsted J, Giesy JP (2003) Alterations in cell membrane properties caused by perfluorinated compounds. Comp Biochem Physiol C Toxicol Pharmacol 135:77–88

    Article  Google Scholar 

  • Yoshikawa Y, Hayashi A, Inai M, Matsushita A, Shibata N, Takada K (2002) Permeability characteristics of endocrine-disrupting chemicals using an in vitro cell culture model, Caco-2 cells. Curr Drug Metab 3:551–557

    Article  CAS  Google Scholar 

  • Zaja R, Klobucar RS, Smital T (2007) Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line. Aquat Toxicol 81:365–376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by IMARES, Institute for Marine Resources & Ecosystem Studies. We would like to thank three anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AlberTinka J. Murk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselmo, H.M.R., van den Berg, J.H.J., Rietjens, I.M.C.M. et al. Inhibition of cellular efflux pumps involved in multi xenobiotic resistance (MXR) in echinoid larvae as a possible mode of action for increased ecotoxicological risk of mixtures. Ecotoxicology 21, 2276–2287 (2012). https://doi.org/10.1007/s10646-012-0984-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0984-2

Keywords

Navigation