Skip to main content

Advertisement

Log in

Modelling copper bioaccumulation in Gammarus pulex and alterations of digestive metabolism

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Bioaccumulation enables to integrate the ability of aquatic organisms to regulate metals and effects of water chemistry on metal bioavailability. Linking this process to biological responses offers thus promising lines of enquiry for protecting aquatic ecosystems. This study aims at characterizing the mechanisms involved in waterborne Cu bioaccumulation and assessing metal impact on digestive metabolism in an ecosystem engineer widely distributed in Europe, Gammarus pulex. The organism was exposed to several Cu concentrations (from 0.5 to 100 μg/L) in aquatic microcosms to establish kinetic parameters for the construction and comparison of two bioaccumulation models, i.e. the biodynamic and saturation models. Cu uptake was recorded in waters exhibiting various concentrations of Na, Mg and Ca at environmental levels to assess the influence of cationic composition on bioaccumulation. Then, the effect of increasing Cu in exposure media on the digestive metabolism of G. pulex was investigated by measuring enzymatic activities (β-glucosidase, N-acetyl-β-glucosaminidase, β-galactosidase). We showed that the saturation model is more suitable than the biodynamic model to describe Cu bioaccumulation in gammarids due to a maximal capacity of animals to accumulate the metal. Cationic composition of water affected insignificantly Cu uptake. All activities of tested enzymes decreased with increasing Cu in exposure media but with different degrees. High correlations were established between the inhibition of enzymatic activities and amounts of Cu bioaccumulated by gammarids. These biological responses could thus provide early-warming of Cu impact on aquatic biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452

    Article  CAS  Google Scholar 

  • Alayse-Danet AM, Charlou JL, Jézéquel M, Samain JF (1979) Modèle de détection rapide des effets sublétaux des polluants: modification des taux d’amylase et de trypsine d’Artemia salina contaminée par le cuivre ou le zinc. Mar Biol 51:41–46

    Article  CAS  Google Scholar 

  • Atli G, Canli M (2011) Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology 20:1861–1869

    Article  CAS  Google Scholar 

  • Boets P, Lock K, Goethals PL, Janssen CR, De Schamphelaere KA (2012) A comparison of the short-term toxicity of cadmium to indigenous and alien gammarid species. Ectoxicology 21:1135–1144

    Article  CAS  Google Scholar 

  • Borgmann U, Norwood WP (1995) Kinetics of excess (above background) copper and zinc in Hyalella azteca and their relationship to chronic toxicity. Can J Fish Aquat Sci 52:864–874

    Article  CAS  Google Scholar 

  • Borgmann U, Norwood WP, Dixon DG (2004) Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model. Environ Pollut 131(3):469–484

    Article  CAS  Google Scholar 

  • Borgmann U, Nowierski M, Dixon DG (2005) Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model. Aqua Toxicol 73:268–287

    Article  CAS  Google Scholar 

  • Bourgeault A, Gourlay-France C, Tusseau-Vuillemin MH (2010) Modeling the effect of water chemistry on the bioaccumulation of waterborne cadmium in zebra mussels. Environ Toxicol Chem 29:2182–2189

    Article  CAS  Google Scholar 

  • Brooks SJ, Lloyd Mills C (2003) The effect of copper on osmoregulation in the freshwater amphipod Gammarus pulex. Comp Biochem Physiol Mol Integrat Physiol 135:527–537

    Article  Google Scholar 

  • Chen Z, Mayer LM, Weston DP, Bock MJ, Jumars PA (2002) Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates. Environ Toxicol Chem 21:1243–1248

    Article  CAS  Google Scholar 

  • Croteau MN, Luoma SN (2007) Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes. Environ Sci Technol 41:3140–3145

    Article  CAS  Google Scholar 

  • De Coen WM, Janssen CR (1998) The use of biomarkers in Daphnia magna toxicity testing—I. The digestive physiology of daphnids exposed to toxic stress. Hydrobiologia 367:199–209

    Article  Google Scholar 

  • de Oliveira EC, Lopes RM, Paumgartten FJR (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56:369–374

    Article  Google Scholar 

  • De Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54

    Article  Google Scholar 

  • De Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1248–1255

    Article  Google Scholar 

  • Dedourge-Geffard O, Palais F, Biagianti-Risbourg S, Geffard O, Geffard A (2009) Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere 77:1569–1576

    Article  CAS  Google Scholar 

  • Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008) Physiological and behavioural responses of Gammarus pulex (Crustacea: amphipoda) exposed to cadmium. Aquat Toxicol 86:413–425

    Article  CAS  Google Scholar 

  • Ferreira D, Ciffroy P, Tusseau-Vuillemin M-H, Garnier C, Garnier J-M (2009) Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: influence of water cationic composition (Ca, Mg, Na and pH). Chemosphere 74:1117–1124

    Article  CAS  Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2004) Trace elements in river waters. Treatise on geochemistry: surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 225–272

    Google Scholar 

  • Geffard A, Sartelet H, Garric J, Biagianti-Risbourg S, Delahaut L, Geffard O (2010) Subcellular compartmentalization of cadmium, nickel, and lead in Gammarus fossarum: comparison of methods. Chemosphere 78:822–829

    Article  CAS  Google Scholar 

  • Hoang TC, Rogevich EC, Rand GM, Frakes RA (2008) Copper uptake and depuration by juvenile and adult Florida apple snails (Pomacea paludosa). Ecotoxicology 17:605–615

    Article  CAS  Google Scholar 

  • Hyne RV, Maher WA (2003) Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotox Environ Safe 54:366–374

    Article  CAS  Google Scholar 

  • Komjarova I, Blust R (2009) Effect of Na, Ca and pH on simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable isotopes. Aquat Toxicol 94:81–86

    Article  CAS  Google Scholar 

  • Lebrun JD, Trinsoutrot-Gattin I, Laval K, Mougin C (2010) Insights into the development of fungal biomarkers for metal ecotoxicity assessment: case of Trametes versicolor exposed to copper. Environ Toxicol Chem 29:902–908

    Article  CAS  Google Scholar 

  • Lebrun JD, Perret M, Uher E, Tusseau-Vuillemin MH, Gourlay-France C (2011) Waterborne nickel bioaccumulation in Gammarus pulex: comparison of mechanistic models and influence of water cationic composition. Aquat Toxicol 104:161–167

    Article  CAS  Google Scholar 

  • Li N, Zhao YL, Yang J (2008) Effects of water-borne copper on digestive and metabolic enzymes of the giant freshwater prawn Macrobrachium rosenbergii. Arch Environ Contam Toxicol 55:86–93

    Article  CAS  Google Scholar 

  • Liu XJ, Ni IH, Wang WX (2002) Trophic transfer of heavy metals from freshwater zooplankton Daphnia magna to zebrafish Danio reiro. Water Res 36:4563–4569

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931

    Article  CAS  Google Scholar 

  • Markich SJ, King AR, Wilson SP (2006) Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum): how useful are hardness-modified copper guidelines for protecting freshwater biota? Chemosphere 65:1791–1800

    Article  CAS  Google Scholar 

  • McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037

    Article  CAS  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  Google Scholar 

  • Pellet B, Geffard O, Lacour C, Kermoal T, Gourlay-Francé C, Tusseau-Vuillemin M-H (2009) A model predicting waterborne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium, and temperature. Environ Toxicol Chem 28:2434–2442

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Internat 33:576–582

    Article  CAS  Google Scholar 

  • Roussel H, Chauvet E, Bonzom JM (2008) Alteration of leaf decomposition in copper-contaminated freshwater mesocosms. Environ Toxicol Chem 27:637–644

    Article  CAS  Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2010) Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79:169–173

    Article  CAS  Google Scholar 

  • Schultheis AS, Sanchez M, Hendricks AC (1997) Structural and functional responses of stream insects to copper pollution. Hydrobiologia 346:85–93

    Article  CAS  Google Scholar 

  • Taylor HH, Anstiss JM (1999) Copper and haemocyanin dynamics in aquatic invertebrates. Mar Freshw Res 50:907–931

    Article  CAS  Google Scholar 

  • Tusseau-Vuillemin M-H, Gourlay C, Lorgeoux C, Mouchel J-M, Buzier R, Gilbin R, Seidel J-L, Elbaz-Poulichet F (2007) Dissolved and bioavailable contaminants in the Seine river basin. Sci Total Environ 375:244–256

    Article  CAS  Google Scholar 

  • Vinot I, Pihan JC (2005) Circulation of copper in the biotic compartments of a freshwater dammed reservoir. Environ Pollut 133:169–182

    Article  CAS  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    Article  CAS  Google Scholar 

  • Xu Q, Pascoe D (1993) The bioconcentration of zinc by Gammarus pulex (L) and the application of a kinetic-model to determine bioconcentration factors. Water Res 27:1683–1688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank both the ONEMA (Office National de l’Eau et des Milieux Aquatiques) and the Région Ile-de-France for their financial support. We are also grateful to Ph.D. Christian Mougin (INRA Versailles, PESSAC Unity) for achievement of enzymatic assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie D. Lebrun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebrun, J.D., Perret, M., Geffard, A. et al. Modelling copper bioaccumulation in Gammarus pulex and alterations of digestive metabolism. Ecotoxicology 21, 2022–2030 (2012). https://doi.org/10.1007/s10646-012-0955-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0955-7

Keywords

Navigation