Skip to main content
Log in

Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

We carried out a comparative study of seed progeny taken from the dandelion (Taraxacum officinale s.l.) coenopopulations exposed for a long time to radioactive or chemical contamination originated from the East-Ural radioactive trace zone (EURT) or Nizhniy Tagil metallurgical combine impact zone (NTMC), respectively. Coenopopulations from EURT, NTMC and background areas significantly differ from each other with respect to the qualitative and quantitative composition of allozyme phenes. An analysis of clonal diversity showed the uniqueness of all coenopopulations in terms of their phenogenetics. P-generation seed viability was found to decrease in a similar manner as all types of the industrial stress increased. Studies of F 1-generation variability in radio- and metal resistance by family analysis showed that seed progeny from EURT impact zone possessed high viability that, however, was accompanied by development of latent injuries resulting in low resistance to additional man-caused impacts. In F 1-generation originated from NTMC zone, high seed viability was combined with increased resistance to provocative heavy metal and radiation exposure. No significant differences in responses to ‘habitual’ and ‘new’ factors, i.e. pre-adaptation effect, were found in samples from the contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarkrog A, Dahlgaard H, Nielsen SP, Trapeznikov AV, Molchanova IV, Pozolotina VN, Karavaeva EN, Yushkov PI, Polikarpov GG (1997) Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995). Sci Total Environ. doi:10.1016/S0048-9697(97)00098-3

    Google Scholar 

  • Abramov VI, Fedorenko OM, Shevchenko VA (1992) Genetic consequences of radioactive contamination for populations of Arabidopsis. Sci Total Environ. doi:10.1016/0048-9697(92)90234-J

    Google Scholar 

  • Altukhov YP (ed) (2005) Intraspecific genetic diversity: monitoring, conservation, and management. Springer, Berlin

    Google Scholar 

  • Antonova EV, Pozolotina VN (2007) Specific features of the allozyme structure of dandelion populations under conditions of radionuclide and chemical contamination. Russ J Ecol. doi:10.1134/S1067413607050062

    Google Scholar 

  • Beresford NA, Wright SM, Barnett CL, Hingston JL, Vives i Batlle J, Copplestone D, Kryshev II, Sazykina TG, Prohl G, Arkhipov A, Howard BJ (2005) A case study in the Chernobyl zone Part 2: predicting radiation induced effects in biota. Radioprotection. doi:10.1051/radiopro:2005s1-045

  • Bezel’ VS, Pozolotina VN, Bel’skii EA, Zhuikova TV (2001) Variation in population parameters: adaptation to toxic environmental factors. Russ J Ecol. doi:10.1023/A:1012534201258

    Google Scholar 

  • Burlakova EB, Mikhailov VF, Mazurik VK (2001) The redox homeostasis system in radiation-induced genomic instability. Radiats Biol Radioecol 41(5):489–499

    CAS  Google Scholar 

  • Chen YP, Li R, He JM (2011) Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology. doi:10.1007/s10646-011-0620-6

    Google Scholar 

  • Chenal C, Zaka R, Legue F, Misset MT (2006) Effects of low-dose irradiation on two plant models: stipa capillata and Pisum sativum. Int J Low Rad. doi:10.1504/IJLR.2006.012023

    Google Scholar 

  • Evseeva TI, Belykh ES, Maistrenko TA (2005) The activation mechanism of the plants cytogenetic effects after influence on heavy metals. Vestn Inst Biol Komi SC UD RAS 1:2–11

    Google Scholar 

  • Fuma S, Ishii N, Takeda H, Miyamoto K, Yanagisawa K, Ichimasa Y, Saito M, Kawabata Z, Polikarpov GG (2003) Ecological effects of various toxic agents on the aquatic microcosm in comparison with acute ionizing radiation. J Environ Radioact. doi:10.1016/S0265-931x(02)00143-1

    Google Scholar 

  • Gardeström J, Dahl U, Kotsalainen O, Maxson A, Elfwing T, Grahn M, Bengtsson BE, Breitholtz M (2008) Evidence of population genetic effects of long-term exposure to contaminated sediments—a multi-endpoint study with copepods. Aquat Toxicol. doi:10.1016/j.aquatox.2007.12.003

    Google Scholar 

  • Geras’kin S, Oudalova A, Dikareva N, Spiridonov S, Hinton T, Chernonog E, Garnier-Laplace J (2011) Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxicology. doi:10.1007/s10646-011-0664-7

    Google Scholar 

  • Geraskin SA, Dikarev VG, Zyablitskaya YY, Oudalova AA, Spirin YV, Alexakhin RM (2003) Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. J Environ Radioact. doi:10.1016/S0265-931x(02)00121-2

    Google Scholar 

  • Geras’kin SA, Kim JK, Dikarev VG, Oudalova AA, Dikareva NS, Spirin YV (2005) Cytogenetic effects of combined radioactive (Cs-137) and chemical (Cd, Pb, and 2,4-D herbicide) contamination on spring barley intercalary meristem cells. Mutat Res Genetic Toxicol Environ Mutagen. doi:10.1016/j.mrgentox.2005.06.004

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North Holland, Amsterdam

    Google Scholar 

  • Hine GJ, Brownell GL (eds) (1956) Radiation dosimetry. Academic Press, New York

    Google Scholar 

  • Kashin AS, Anfalov VE, Demochko YA (2005) Studying allozyme variation in sexual and apomictic Taraxacum and Pilosella (Asteraceae) populations. Russ J Genet 41(2):144–154

    Article  CAS  Google Scholar 

  • Keane B, Collier MH, Rogstad SH (2005) Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale). Environ Monit Assess. doi:10.1007/s10661-005-4333-2

    Google Scholar 

  • Kozlov MV, Zvereva EL (2004) Reproduction of mountain birch along a strong pollution gradient near Monchegorsk, Northwestern Russia. Environ Pollut. doi:10.1016/j.envpol.2004.05.018

    Google Scholar 

  • Kranz AR (1994) Heavy-ion and cosmic-radiation effects in different targets of the Arabidopsis seed. Acta Astronaut 33:201–210

    Article  CAS  Google Scholar 

  • Little JB (1998) Radiation-induced genomic instability. Int J Radiat Biol 74(6):663–671

    Article  CAS  Google Scholar 

  • Longauer R, Gömöry D, Paule L, Blada I, Popescu F, Mankovska B, Muller-Starck G, Schubert R, Percy K, Szaro RC, Karnosky DF (2004) Genetic effects of air pollution on forest tree species of the Carpathian Mountains. Environ Pollut. doi:10.1016/j.envpol.2003.10.023

    Google Scholar 

  • Meirmans PG, Vlot EC, Den Nijs JCM, Menken SBJ (2003) Spatial ecological and genetic structure of a mixed population of sexual diploid and apomictic triploid dandelions. J Evol Biol 16(2):343–352

    Article  CAS  Google Scholar 

  • Misik M, Micieta K, Solenska M, Misikova K, Pisarcikova H, Knasmuller S (2007) In situ biomonitoring of the genotoxic effects of mixed industrial emissions using the Tradescantia micronucleus and pollen abortion tests with wild life plants: demonstration of the efficacy of emission controls in an eastern European city. Environ Pollut. doi:10.1016/j.envpol.2006.04.026

    Google Scholar 

  • Molchanova IV, Pozolotina VN, Karavaeva EN, Mikhailovskaya LN, Antonova EV, Antonov KL (2009) Radioactive inventories within the East-Ural radioactive state reserve on the Southern-Urals. Radioprotection. doi:10.1051/radiopro/20095136

    Google Scholar 

  • Molinier J, Oakeley EJ, Niederhauser O, Kovalchuk I, Hohn B (2005) Dynamic response of plant genome to ultraviolet radiation and other genotoxic stresses. Mutat Res. doi:10.1016/j.mrfmmm.2004.09.016

  • Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med. doi:10.1002/(SICI)1097-0258(19980430

    Google Scholar 

  • Nikipelov BV, Romanov GN, Buldakov LA, Babaev NS, Kholina YB, Mikerin EI (1989) A radiation accident in the Southern Urals in 1957. Atom Energy. doi:10.1007/BF01125250

    Google Scholar 

  • Pareek A, Sopory SK, Bohnert HJ, Govendjee (eds) (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht

  • Parkes TL, Hilliker AJ, Phillips JP (1993) Genetic and biochemical analysis of glutathione-s-transferase in the oxygen defense system of Drosophila melanogaster. Genome 36(6):1007–1014

    Article  CAS  Google Scholar 

  • Peacock AC, Bunting SL, Queen KG (1965) Serum protein electrophoresis in acrylamide gel: patterns from normal human subjects. Science. doi:10.1126/science.147.3664.1451

    Google Scholar 

  • Pozolotina VN (2003) Remote effect of irradiation on a heterogenesis of apomictic plants. Radiats Biol Radioecol 43(4):443–451

    CAS  Google Scholar 

  • Pozolotina VN, Antonova EV, Bezel’ VS, Zhuikova TV, Severyukhina OA (2006) Pathways of adaptation of common dandelion cenopopulations to long-term chemical and radiation influences. Russ J Ecol. doi:10.1134/S1067413606060063

    Google Scholar 

  • Pozolotina VN, Antonova EV, Bezel’ VS (2009) Intrapopulation variation in the quality of dandelion seed progeny in zones of chemical and radioactive contamination. Russ J Ecol. doi:10.1134/S1067413609050099

    Google Scholar 

  • Pozolotina VN, Molchanova IV, Karavaeva EN, Mikhaylovskaya LN, Antonova EV (2010) Radionuclides in terrestrial ecosystems of the zone of Kyshtym accident in the Urals. J Environ Radioact. doi:10.1016/j.jenvrad.2008.06.011

    Google Scholar 

  • Prus-Glowacki W, Wojnicka-Poltorak A, Oleksyn J, Reich PB (1999) Industrial pollutants tend to increase genetic diversity: evidence from field-grown European scots pine populations. Water Air Soil Poll. doi:10.1023/A:1005250923976

    Google Scholar 

  • Rakwal R, Agrawal GK, Shibato J, Imanaka T, Fukutani S, Tamogami S, Endo S, Sahoo SK, Masuo Y, Kimura S (2009) Ultra low-dose radiation: stress responses and impacts using rice as a grass model. Int J Mol Sci. doi:10.3390/Ijms10031215

    Google Scholar 

  • Rogstad SH, Keane B, Collier MH (2003) Minisatellite DNA mutation rate in dandelions increases with leaf-tissue concentrations of Cr, Fe, Mn, and Ni. Environ Toxicol Chem. doi:10.1002/etc.5620220919

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. doi:10.1093/jexbot/53.372.1351

    Google Scholar 

  • Shao CL, Folkard M, Michael BD, Prise KM (2004) Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci USA. doi:10.1073/pnas.0404930101

    Google Scholar 

  • Theodorakis CW, Blaylock BG, Shugart LR (1997) Genetic ecotoxicology I: DNA integrity and reproduction in mosquitofish exposed in situ to radionuclides. Ecotoxicology. doi:10.1023/A:1018674727022

    Google Scholar 

  • van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum), II. The breakdown of apomixis. Heredity 83:715–721

    Article  Google Scholar 

  • Wilson EB (1927) Probable inference, the law of succession and statistical inference. J Am Stat Assoc. doi:10.2307/2276774

    Google Scholar 

  • Zhivotovsky LA (1991) Population biometry. Nauka, Moscow

    Google Scholar 

Download references

Acknowledgments

This work was done with financial support from Program of the oriented basic researches between Institutes of UB RAS with state corporations of the Russian Federation (project No 12-4-002-NC) and Program of the multidisciplinary researches between Institutes of UB RAS (project No 12-M-24-2016), the Federal Special Scientific & Technical Program in support of leading scientific schools (SS-5325.2012.4). We are indebted to Prof. Tatjana Zhu’kova, Dr. Olga A. Timokhina, junior researcher Elina M. Karimullina and engineer Tatjana Ye. Belyaeva for technical assistance. Helpful remarks of two anonymous reviewers are gratefully acknowledged.

Conflict of interests

The authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera N. Pozolotina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozolotina, V.N., Antonova, E.V. & Bezel, V.S. Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas. Ecotoxicology 21, 1979–1988 (2012). https://doi.org/10.1007/s10646-012-0932-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0932-1

Keywords

Navigation