Skip to main content

Advertisement

Log in

Use of toe clips as a nonlethal index of mercury accumulation and maternal transfer in amphibians

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Nonlethal indices of contaminant exposure can facilitate research on the accumulation and effects of contaminants in wildlife. Here, we tested the efficacy of using amputated toes (“toe clips”), a common byproduct when marking amphibians in population and genetic studies, to determine mercury (Hg) concentrations in amphibians. We examined total mercury (THg) concentrations in American toads (Bufo americanus) collected along a contamination gradient at a Hg-contaminated field site. We found significant positive correlations between toe THg and blood THg concentrations in adult males and females collected in two different years. We also found that blood and toe clips could be used to predict maternal transfer of Hg, an important mechanism of reproductive toxicity in wildlife. Maternal toe THg concentrations were more highly correlated with egg THg concentrations than were maternal blood THg concentrations. Our results indicate that amputated toes are effective for identifying Hg concentrations in amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bank MS, Crocker J, Connery B, Amirbahman A (2007) Mercury bioaccumulation in green frog (Rana clamitans) and bullfrog (Rana catesbeiana) tadpoles from Acadia National Park, Maine, USA. Environ Toxicol Chem 26:118–125

    Article  CAS  Google Scholar 

  • Beaupre SJ, Jacobson ER, Lillywhite HB, Zamudio K (2004) Guidelines for the use of live amphibians and reptiles in field and laboratory research. A publication of the American Society of Ichthyologists and Herpetologists, approved by board of Governors, June 30, 2004, Norman, Oklahoma

  • Bergeron CM, Husak JF, Unrine JM, Romanek CS, Hopkins WA (2007) Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environ Toxicol Chem 26:1733–1741

    Article  CAS  Google Scholar 

  • Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2010a) Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians. Environ Toxicol Chem 29:980–988

    Article  CAS  Google Scholar 

  • Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2010b) Bioaccumulation and maternal transfer of mercury and selenium in amphibians. Environ Toxicol Chem 29:989–997

    Article  CAS  Google Scholar 

  • Bergeron CM, Hopkins WA, Todd BD, Hepner MJ, Unrine JM (2011) Interactive effects of maternal and dietary mercury exposure have latent and lethal consequences for amphibian larvae. Environ Sci Technol 45:3781–3787

    Article  CAS  Google Scholar 

  • Biek R, Funk WC, Maxell BA, Mills LS (2002) What is missing in amphibian decline research: insights from ecological sensitivity analysis. Conserv Biol 16:728–734

    Article  Google Scholar 

  • Burton TM, Likens GE (1975) Salamander populations and biomass in the Hubbard Brook Experimental Forest, New Hampshire. Copeia 1975:541–546

    Article  Google Scholar 

  • Carter LJ (1977) Chemical plants leave unexpected legacy for two Virginia rivers. Science 198:1015–1020

    Article  CAS  Google Scholar 

  • Crump KL, Trudeau VL (2009) Mercury-induced reproductive impairment in fish. Environ Toxicol Chem 28:895–907

    Article  CAS  Google Scholar 

  • Day RD, Christopher SJ, Becker PR, Whitaker DW (2005) Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environ Sci Technol 39:437–446

    Article  CAS  Google Scholar 

  • Eisler R (2006) Mercury hazards to living organisms. CRC Press, Boca Raton

    Book  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  • Fletcher DE, Hopkins WA, Saldaña T, Baionno JA, Arribas C, Standora MM, Fernández-Delgado C (2006) Geckos as indicators of mining pollution. Environ Toxicol Chem 25:2432–2445

    Article  CAS  Google Scholar 

  • Heyer WR, Donnelly MA, McDiarmid RW, Hayek LAC, Foster MS (1994) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington

    Google Scholar 

  • Hopkins WA (2007) Amphibians as models for studying environmental change. ILAR J 48:270–277

    CAS  Google Scholar 

  • Hopkins WA, Mendonça MT, Rowe CL, Congdon JD (1998) Elevated trace element concentrations in Southern toads, Bufo terrestris, exposed to coal combustion waste. Arch Environ Contam Toxicol 35:325–329

    Article  CAS  Google Scholar 

  • Hopkins WA, Roe JH, Snodgrass JW, Jackson BP, Kling DE, Rowe CL, Congdon JD (2001) Nondestructive indices of trace element exposure in squamate reptiles. Environ Pollut 115:1–7

    Article  CAS  Google Scholar 

  • Hopkins WA, Snodgrass JW, Baionno JA, Roe JH, Staub BP, Jackson BP (2005) Functional relationships among selenium concentrations in the diet, target tissues, and nondestructive tissue samples of two species of snakes. Environ Toxicol Chem 24:344–351

    Article  CAS  Google Scholar 

  • Hothem RL, Jennings MR, Crayon JJ (2010) Mercury contamination in three species of anuran amphibians from the Cache Creek Watershed, California, USA. Environ Monit Assess 163:433–448

    Article  CAS  Google Scholar 

  • Jackson BP, Hopkins WA, Baionno J (2003) Laser ablation-ICP-MS analysis of dissected tissue: a conservation-minded approach to assessing contaminant exposure. Environ Sci Technol 37:2511–2515

    Article  CAS  Google Scholar 

  • Kalb HJ, Zug GR (1990) Age estimates for a population of American Toads, Bufo americanus (Salientia: Bufonidae), in Northern Virginia. Brimleyana 16:79–86

    Google Scholar 

  • Linder G, Grillitsch B (2000) Ecotoxicology of metals. In: Sparling DW, Linder G, Bishop CA (eds) Ecotoxicology of amphibians and reptiles. SETAC Press, Pensacola, pp 325–459

    Google Scholar 

  • Linder G, Krest SK, Sparling DW (2003) Amphibian decline: an integrated analysis of multiple stressor effects. SETAC Press, Pensacola

    Google Scholar 

  • Liner AE, Smith LL, Castleberry SB (2007) Effects of toe-clipping on the survival and growth of Hyla squirella. Herpetol Rev 38:143–145

    Google Scholar 

  • Malvandi H, Ghasempouri S, Esmaili-Sari A, Bahramifar N (2010) Evaluation of the suitability of application of golden jackal (Canis aureus) hair as a noninvasive technique for determination of body burden mercury. Ecotoxicology 19:997–1002

    Article  CAS  Google Scholar 

  • McCarthy MA, Parris KM (2004) Clarifying the effect of toe clipping on frogs with Bayesian statistics. J Appl Ecol 41:780–786

    Article  Google Scholar 

  • Phillott AD, Skerratt LF, McDonald KR, Lemckert FL, Hines HB, Clarke JM, Alford RA, Speare R (2007) Toe-clipping as an acceptable method of identifying individual anurans in mark recapture studies. Herpetol Rev 38:305–308

    Google Scholar 

  • Pough FH (1980) The advantages of ectothermy for tetrapods. Am Nat 115:92–112

    Article  Google Scholar 

  • Regester KJ, Lips KR, Whiles MR (2006) Energy flow and subsidies associated with the complex life cycle of ambystomatid salamanders in ponds and adjacent forest in southern Illinois. Oecologia 147:303–314

    Article  Google Scholar 

  • Rudd JWM (1995) Sources of methyl mercury to freshwater ecosystems: a review. Water Air Soil Pollut 80:697–713

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18

    Article  CAS  Google Scholar 

  • Schmidt BR, Feldmann R, Schaub M (2005) Demographic processes underlying population growth and decline in Salamandra salamandra. Conserv Biol 19:1149–1156

    Article  Google Scholar 

  • Sparling DW, Linder G, Bishop CA, Krest SK (eds) (2010) Ecotoxicology of amphibians and reptiles, 2nd edn. CRC Press, Boca Raton, FL

  • Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39:228–269

    Article  CAS  Google Scholar 

  • Todd BD, Bergeron CM, Hepner MJ, Burke JN, Hopkins WA (2011a) Does maternal exposure to an environmental stressor affect offspring response to predators? Oecologia 166:283–290

    Article  Google Scholar 

  • Todd BD, Bergeron CM, Hepner MJ, Hopkins WA (2011b) Aquatic and terrestrial stressors in amphibians: a test of the double jeopardy hypothesis based on maternally and trophically derived contaminants. Environ Toxicol Chem 30:2277–2284

    Article  CAS  Google Scholar 

  • Unrine JM, Hopkins WA, Romanek CS, Jackson BP (2007) Bioaccumulation of trace elements in omnivorous amphibian larvae: implications for amphibian health and contaminant transport. Environ Pollut 149:182–192

    Article  CAS  Google Scholar 

  • Wada H, Yates DE, Evers DC, Taylor RJ, Hopkins WA (2010) Tissue mercury concentrations and adrenocortical responses of female big brown bats (Eptesicus fuscus) near a contaminated river. Ecotoxicology 19:1277–1284

    Article  CAS  Google Scholar 

  • Waddle JH, Rice KG, Mazzotti FJ, Percival HF (2008) Modeling the effect of toe clipping on treefrog survival: beyond the return rate. J Herpetol 42:467–473

    Article  Google Scholar 

  • Weiner JG, Spry DJ (1996) Toxicological significance of mercury in freshwater fish. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. lewis, Boca Raton, pp 297–340

    Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Budischak, D. Cristol, K. Carlson-Drexler, A. Condon, M. Hepner, M. Howie, C. Ramos, J. Schmerfeld, H. Wada, and the South River Science Team for assistance and project support. We thank the landowners long the South River and the Waynesboro Parks and Recreation Department for access to sampling locations. Financial support was provided by E. I. DuPont de Nemours, Virginia Tech, and by the National Science Foundation (NSF # IOB-0615361). CMB was supported by the U.S. EPA STAR Graduate Fellowship (FP-9170040-1). EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA. Research was completed with oversight from the South River Science Team, which is a collaboration of state and federal agencies, academic institutions, and environmental interests. Collecting permits and IACUC permission were obtained through WAH at Virginia Polytechnic Institute and State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Todd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, B.D., Bergeron, C.M. & Hopkins, W.A. Use of toe clips as a nonlethal index of mercury accumulation and maternal transfer in amphibians. Ecotoxicology 21, 882–887 (2012). https://doi.org/10.1007/s10646-012-0850-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0850-2

Keywords

Navigation