Skip to main content
Log in

Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bat L, Raffaelli D (1998) Sediment toxicity testing: a bioassay approach using the amphipod Corophium volutator and the polychaete Arenciola marina. J Exp Mar Biol Ecol 226:217–239

    Article  CAS  Google Scholar 

  • Baudrimont M, Andrès S, Metivaud J, Lapaquellerie Y, Ribeyre F, Maillet N, Latouche C, Boudou A (1999) Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (River Lot, France): II. Metallothionein response to metal exposure. Environ Toxicol Chem 18:2471–2477

    Google Scholar 

  • Baumann Z, Fisher NS (2011) Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water. Sci Total Environ 409:2607–2615

    Article  CAS  Google Scholar 

  • Boyle D, Brix KV, Amlund H, Lundebye AK, Hogstrand C, Bury NR (2008) Natural arsenic contaminated diets perturb reproduction in fish. Environ Sci Technol 42:5354–5360

    Article  CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries—a review. Environ Poll 76:89–131

    Article  CAS  Google Scholar 

  • Cammen LM (1980) Ingestion rate: an empirical model for aquatic deposit feeders and detritivors. Oecologia 44:303–310

    Article  Google Scholar 

  • Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010a) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat Toxicol 98:34–43

    Article  CAS  Google Scholar 

  • Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010b) Metal toxicity in a sediment-dwelling polychaete: threshold body concentrations or overwhelming accumulation rates? Environ Poll 158:3071–3076

    Article  Google Scholar 

  • Conder JM, Seals LD, Lanno RP (2002) Method for determining toxicologically relevant cadmium residues in the earthworm Eisena fetida. Chemosphere 49:1–7

    Article  CAS  Google Scholar 

  • Costa PM, Santos HM, Peres I, Costa MH, Alves S, Capelo-Martinez JL, Diniz MS (2009) Toxicokinetics of waterborne trivalent arsenic in the freshwater bivalve Corbicula fluminea. Arch Environ Cont Toxicol 57:338–347

    Article  CAS  Google Scholar 

  • Diniz MS, Santos HM, Costa PM, Peres I, Costa HM, Capelo JL (2007) Metallothionein responses in the Asiatic clam (Corbicula fluminea) after exposure to trivalent arsenic. Biomarkers 12:589–598

    Article  CAS  Google Scholar 

  • Fattorini D, Regoli F (2004) Arsenic speciation in tissues of the mediterranean polychaete Sabella spallanzanii. Environ Toxicol Chem 23:1881–1887

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: a review. Mar Ecol 26:255–264

    Article  CAS  Google Scholar 

  • Foster S, Maher W, Krikowa F, Apte S (2007) A microwave assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 71:237–249

    Article  Google Scholar 

  • Geiszinger A, Goessler W, Kuehnelt D, Francesconi K, Kosmus W (1998) Determination of arsenic compounds in earthworms. Environ Sci Technol 32:2238–2243

    Article  CAS  Google Scholar 

  • Geiszinger AE, Goessler W, Francesconi KA (2002a) The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater. Mar Environ Res 53:37–50

    Article  CAS  Google Scholar 

  • Geiszinger AE, Goessler W, Francesconi KA (2002b) Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens. Environ Sci Technol 36:2905–2910

    Article  CAS  Google Scholar 

  • Gibbs PE, Langston WJ, Burt GR, Pascoe PL (1983) Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J Mar Biol Assoc UK 63:313–325

    Article  CAS  Google Scholar 

  • Jones RP, Bednar AJ, Inouye LS (2009) Subcellular compartmentalization of lead in the earthworm, Eisenia fetida: relationship to survival and reproduction. Ecotoxicol Environ Safe 72:1045–1052

    Article  CAS  Google Scholar 

  • Kirby J, Maher W, Chariton A, Krikowa F (2002) Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Appl Organomet Chem 16:192–201

    Article  CAS  Google Scholar 

  • Kirby J, Maher W, Ellwood M, Krikowa F (2004) Arsenic species determination in biological tissues by HPLC-ICP-MS and HPLCHG-ICP-MS. Aust J Chem 57:957–966

    Article  CAS  Google Scholar 

  • Langdon CJ, Meharg AA, Feldmann J, Balgar T, Charnock JM, Farquhar M, Piearce TG, Semple KT, Cotter-Howells J (2002) Arsenic speciation in arsenate-resistant and non resistant populations of the earthworm Lumbricus rubellus. J Environ Monit 4:608–630

    Article  Google Scholar 

  • Langdon CJ, Winters C, Stürzenbaum SR, Morgan AJ, Charnock JM, Meharg AA, Piearce TG, Lee PH, Semple KT (2005) Ligand arsenic complexation and immunoperoxidase detection of metallothionein in the earthworm Lumbricus rubellus inhabiting arsenic-rich soil. Environ Sci Technol 39:2042–2048

    Article  CAS  Google Scholar 

  • Langston WJ (1980) Arsenic in U.K. estuarine sediments and its availability to benthic organisms. J Mar Biol Ass UK 60:869–881

    Article  Google Scholar 

  • Li L, Zhou D, Wang P, Peijnenburg WJGM (2009) Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisena fetida exposed to cadmium-contamianted soil. Arch Environ Contam Toxicol 57:178–724

    Article  Google Scholar 

  • Maher W, Forster S, Krikowa F, Snitch P, Chapple G, Craig P (2001) Measurement of trace elements and phosphorus in marine animal and plant tissues by low-volume microwave digestion and ICP-MS. At Spectrosc 22:361–370

    CAS  Google Scholar 

  • Maher W, Foster S, Krikowa F (2009) Arsenic species in Australian temperate marine food chains. Mar Freshw Res 60:1–8

    Article  Google Scholar 

  • Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16:917–927

    CAS  Google Scholar 

  • Nelson CH, Lamothe PJ (1993) Heavy metal anomalies in the Tinto and Odiel river and estuary system, Spain. Estuaries 16:496–511

    Article  CAS  Google Scholar 

  • Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26:1186–1191

    Article  CAS  Google Scholar 

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    Article  CAS  Google Scholar 

  • Rainbow PS, Smith BD, Casado-Martinez MC (2011) Biodynamic modelling of the bioaccumulation of arsenic by the polychaete Nereis diversicolor. Environ Chem 8:1–8

    Article  CAS  Google Scholar 

  • Scott N, Hatelid KM, MacKenzie NE, Carter DE (1993) Reductions of arsenic (III) and arsenic (V) species with glutathione. Chem Res Toxicol 6:102–106

    Article  CAS  Google Scholar 

  • Selck H, Forbes VE (2004) The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp. I. Mar Environ Res 57:261–279

    Article  CAS  Google Scholar 

  • Selck H, Decho AW, Forbes VE (1999) Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitella species I. Environ Toxicol Chem 18:1289–1297

    CAS  Google Scholar 

  • Townsend AT, Palmer AS, Stark SC, Samson C, Scouller RC, Snape I (2007) Trace metal characterisation of marine sediment reference materials MESS-3 and PACS-2 in dilute extracts. Mar Pollut Bull 54:226–246

    Article  Google Scholar 

  • Tsui MTK, Wang W-X (2006) Acute toxicity of mercury to Daphnia magna under different conditions. Environ Sci Technol 40:4025–4030

    Article  CAS  Google Scholar 

  • Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181–182:211–217

    Article  Google Scholar 

  • Van Straalen NM, Donker MH, Vijver MG, van Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Env Poll 136:409–417

    Article  Google Scholar 

  • Ventura-Lima J, Sandrini JZ, Ferreira Cravo M, Piedras FR, Moraes TB, Fattorini D, Notti A, Regoli F, Geracitano LA, Marins LFF, Montserrat JM (2007) Toxicological responses in Laeonereis acuta (annelida, polychaeta) after arsenic exposure. Environ Int 33:559–564

    Article  CAS  Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A, Pipe RK, Farrar SV (1987) Metallothioneins and lysosomes in metal toxicity and accumulation in marine mussels: the effects of cadmium in the presence and absence of phenanthrene. Mar Biol 94:251–257

    Article  CAS  Google Scholar 

  • Vijver MG, van Gestel CAM, Lanno RP, van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecological relevance: a review. Environ Sci Tech 38:4705–4712

    Article  CAS  Google Scholar 

  • Vijver MG, van Gestel CAM, van Straalen NM, Lanno RP, Peijnenburg WJGM (2006) Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). Environ Toxicol Chem 25:807–814

    Article  CAS  Google Scholar 

  • Voets J, Redeker ES, Blust R, Bervoets L (2009) Differences in metal sequestration between zebra mussels from clean and polluted field locations. Aquat Toxicol 93:53–60

    Article  CAS  Google Scholar 

  • Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197

    Article  CAS  Google Scholar 

  • Wang W-X, Guan R (2010) Subcellular distribution of zinc in Daphnia magna and implication for toxicity. Environ Toxicol Chem 29:1841–1848

    Google Scholar 

  • Wang W-X, Rainbow PS (2006) Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3:395–399

    Article  CAS  Google Scholar 

  • Wang MJ, Wang W-X (2008) Cadmium toxicity in a marine diatom as predicted by the cellular metal sensitive fraction. Environ Sci Technol 42:940–946

    Article  CAS  Google Scholar 

  • Waring J, Maher W (2005) Arsenic bioaccumulation and species in marine polychaetes. Appl Organomet Chem 19:917–929

    Article  CAS  Google Scholar 

  • Waring J, Maher W, Foster S, Krikowa F (2005) Occurrence and speciation of arsenic in common Australian coastal polychaete species. Environ Chem 2:108–118

    Article  CAS  Google Scholar 

  • Yu S, Lanno RP (2010) Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisena andrei). Environ Toxicol Chem 29:1568–1574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the European Community’s Seventh Framework Program through a Marie Curie Intra-European Fellowship to M.C. Casado-Martinez (FP7/2007-2013 under grant agreement no. PIEF-GA-2008-219781), and from the Ecochemistry Laboratory, University of Canberra, Australia. The authors are grateful to Catherine Unsworth from the EMMA Laboratories at the Natural History Museum for the metal analyses and her advice for the preparation of subcellular fraction solutions prior to metal quantification and Dr Lauren Howard for the SEM characterisation of precipitates. MCCM acknowledges the financial support from the multidisciplinary research and education project Environmental Waste Management (EWMA) during the writing of this manuscript at the University of Tromsø.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Casado-Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casado-Martinez, M.C., Duncan, E., Smith, B.D. et al. Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. Ecotoxicology 21, 576–590 (2012). https://doi.org/10.1007/s10646-011-0818-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0818-7

Keywords

Navigation